SEMICONDUCTOR MATERIALS

Structural and morphological characterizations of ZnO nanopowder synthesized by hydrothermal route using inorganic reactants

D. Djouadi, M. Meddouri, A. Chelouche, L. Hammiche and A. Aksas

+ Author Affiliations

 Corresponding author: D. Djouadi, Email:djameldjouadi@yahoo.fr

PDF

Abstract: Zinc oxide nanoscale powder has been synthesized by a hydrothermal route using zinc sulfate and sodium hydroxide. The as-prepared powder was annealed at 600℃ for 2 h and then characterized by X-ray diffraction (XRD), scanning electron microscopy and infra-red Fourier transformed spectroscopy. XRD measurements have shown a ZnO hexagonal wurtzite polycrystalline structure with good crystallinity and the formation of a new sodium pyrosulfate phase in the as-prepared powder. The annealing improves the crystalline quality of the powder and transforms the sodium pyrosulfate phase to a sodium sulfate one. The thermal treatment does not affect the lattice parameters and the Zn-O bond length but improves the random orientation of the ZnO crystallites growth. ZnO crystallites have an interconnected-nano-needles morphology forming irregular shaped aggregates. The size of the crystallites is about 20 nm. EDX analysis has shown the presence of C and S in addition to Zn and O. FTIR spectra confirm the formation of ZnO and sodium sulfate. The synthesized ZnO powder has a very high crystalline quality and the used method is a very advantageous one for the fabrication of nanosized metal oxides from inorganic reactants for photo-catalysis applications.

Key words: ZnOhydrothermal methodzinc sulfatenanoneedlesDRXSEMFTIR



[1]
Kim S J, Kim H H, Kwona J B, et al. Novel fabrication of various size ZnO nanorods using hydrothermal method. Microelectron Eng, 2010, 87:1534 doi: 10.1016/j.mee.2009.11.033
[2]
Djurisic A B, Ng A M C, Chen X Y. ZnO nanostructures for optoelectronics:material properties and device applications. Progress in Quantum Electron, 2010, 34:191 doi: 10.1016/j.pquantelec.2010.04.001
[3]
Akhtar M S, Khan M A, Jeon M S, et al. Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells. Electrochimica Acta, 2008, 53:7869 doi: 10.1016/j.electacta.2008.05.055
[4]
Das N C, Sokol P E. Hybrid photovoltaic devices from regioregular polythiophene and ZnO nanoparticles composites. Renewable Energy, 2010, 35:2683 doi: 10.1016/j.renene.2010.04.014
[5]
Ma J, Liu J, Bao Y, et al. Synthesis of large-scale uniform mulberry-like ZnO particles with microwave hydrothermal method and its antibacterial property. Ceramics International, 2013, 39:2803 doi: 10.1016/j.ceramint.2012.09.049
[6]
Liu Y L, Yang Y H, Yang H F, et al. Nanosized flower-like ZnO synthesized by a simple hydrothermal method and applied as matrix for horseradish peroxidase immobilization for electro-biosensing. Journal of Inorganic Biochemistry, 2005, 99:2046 doi: 10.1016/j.jinorgbio.2005.07.001
[7]
Sun L, Shao R, Chen Z, et al. Alkali-dependent synthesis of flower-like ZnO structures with enhanced photocatalytic activity via a facile hydrothermal method. Appl Surf Sci, 2012, 258:5455 doi: 10.1016/j.apsusc.2012.02.034
[8]
Donkova B, Dimitrov D, Kostadinov M, et al. Catalytic and photocatalytic activity of lightly doped catalysts M:ZnO (M=Cu, Mn). Mater Chem Phys, 2010, 123:563 doi: 10.1016/j.matchemphys.2010.05.015
[9]
Xie J, Wang H, Duan M. Synthesis and photocatalysis properties of ZnO structures with different morphologies via hydrothermal method. Appl Surf Sci, 2011, 257:6358 doi: 10.1016/j.apsusc.2011.01.105
[10]
Qiuxiang Z, Ke Y, Wei B, et al. Synthesis, optical and field emission properties of three different ZnO nanostructures. Mater Lett, 2007, 61:3890 doi: 10.1016/j.matlet.2006.12.064
[11]
Li Z, Huang X, Liu J, et al. Morphology control and transition of ZnO nanorod arrays by a simple hydrothermal method. Mater Lett, 2008, 62:1503 doi: 10.1016/j.matlet.2007.09.011
[12]
Kim J Y, Cho J W, Kim S H. The characteristic of the ZnO nanowire morphology grown by the hydrothermal method on various surface-treated seed layers. Mater Lett, 2011, 65:1161 doi: 10.1016/j.matlet.2010.10.092
[13]
Tao Y, Fu M, Zhao A, et al. The effect of seed layer on morphology of ZnO nanorod arrays grown by hydrothermal method. Journal of Alloys and Compounds, 2010, 489:99 doi: 10.1016/j.jallcom.2009.09.020
[14]
Wang Z, Huang B, Qin X, et al. Growth of high transmittance vertical aligned ZnO nanorod arrays with polyvinyl alcohol by hydrothermal method. Mater Lett, 2009, 63:130 doi: 10.1016/j.matlet.2008.09.042
[15]
Zhou Z, Zhao Y, Cai Z. Low-temperature growth of ZnOnanorods on PET fabrics with two-step hydrothermal method. Appl Surf Sci, 2010, 256:4724 doi: 10.1016/j.apsusc.2010.02.081
[16]
Lv W, Wei B, Xua L, et al. Photocatalytic properties of hierarchical ZnO flowers synthesized by a sucrose-assisted hydrothermal method. Appl Surf Sci, 2012, 259:557 doi: 10.1016/j.apsusc.2012.04.182
[17]
Wang Y, Chen X, Zhang J, et al. Fabrication of surface-patterned and free-standing ZnO nanobowls. Colloids and Surfaces, 2008, A329:184
[18]
Chiu W S, Khiew P S, Isa D, et al. Synthesis of two-dimensional ZnO nanopellets by pyrolysis of zinc oleate. Chem Eng J, 2008, 142:337 doi: 10.1016/j.cej.2008.04.034
[19]
Bacsa R, Kihn Y, Verelst M, et al. Large scale synthesis of zinc oxide nanorods by homogeneous chemical vapor deposition and their characterization. Surface Coating Technology, 2007, 201:9200 doi: 10.1016/j.surfcoat.2007.04.037
[20]
Ozcan S, Can M M, Ceylan A. Single step synthesis of nanocrystalline ZnO via wet-milling. Mater Lett, 2010, 64:2447 doi: 10.1016/j.matlet.2010.08.012
[21]
Djouadi D, Aksas A, Chelouche A. Elaboration et Caractérisations structurale et optique des nanocristallites toriques de ZnO. Annales de Chimie-Science des Matériaux, 2010, 35(5):255 doi: 10.3166/acsm.35.255-260
[22]
Zak A K, Abdol Majid W H, Darroudi M, et al. Synthesis and characterization of ZnO nanoparticles prepared in gelatin media. Mater Lett, 2011, 65:70 doi: 10.1016/j.matlet.2010.09.029
[23]
Li Z, Huang X, Liu J, et al. Morphology control and transition of ZnO nanorod arrays by a simple hydrothermal method. Mater Lett, 2008, 62:1503 doi: 10.1016/j.matlet.2007.09.011
[24]
He Y, Wang J. A novel simple method to prepare ZnS whiskers. Mater Lett, 2008, 62:1379 doi: 10.1016/j.matlet.2007.08.059
[25]
Da Costa J P, Girão A V, Lourenço J P, et al. Synthesis of nanocrystalline ZnS using biologically generated sulfide. Hydrometallurgy, 2012, 117/118:57 doi: 10.1016/j.hydromet.2012.02.005
[26]
Barret C, Massalski T B. Structures of metals:crystallographic methods, principles and data. Oxford:Pergamon Press, 1980
[27]
Sofiani Z, Derkowska B, Dalasiñski P, et al. Optical properties of ZnO and ZnO:Ce layers grown by spray pyrolysis. Opt Commun, 2006, 267:433 doi: 10.1016/j.optcom.2006.06.049
[28]
Singhal S, Kaur J, Namgyal T, et al. Cu -doped ZnO nanoparticles:synthesis, structural and electrical properties. Physica B, 2012, 407:1223 doi: 10.1016/j.physb.2012.01.103
[29]
Ahsanulhaq Q, Umar A, Hahn Y B. Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution:growth mechanism and structural and optical properties. Nanotechnology, 2007, 18:115603 doi: 10.1088/0957-4484/18/11/115603
[30]
Lv W, Wei B, Xu L, et al. Photocatalytic properties of hierarchical ZnO flowers synthesized by a sucrose-assisted hydrothermal method. Appl Surf Sci, 2012, 259:557 doi: 10.1016/j.apsusc.2012.04.182
[31]
Kloprogge J T, Wharton D, Hickey L, et al. Infrared and Raman study of interlayer anions (CO3)2-, (NO3)-, (SO4)2- and (ClO4)- in Mg/Al-hydrotalcite. American Mineralogist, 2002, 87:623 doi: 10.2138/am-2002-5-604
[32]
Frost R L, Carmody O, Erickson K L, et al. Molecular structure of the uranyl mineral uranopilite-a Raman spectroscopic study. Journal of Molecular Structure, 2004, 733(1-3):203
Fig. 1.  XRD spectra of as-prepared (1) and annealed (2) ZnO powders.

Fig. 2.  SEM images of ZnO powder.

Fig. 3.  EDS spectrum of ZnO powder.

Fig. 4.  FTIR spectra of as-prepared and annealed ZnO powder.

Table 1.   Relative intensities and calculated TC$_{(hkl)}$ for the ZnO aerogel 7 mean peaks.

Table 2.   Lattice parameters ($a$ and $c)$, crystallite size ($D$) and Zn-O bond length ($L$) of the prepared ZnO powder.

[1]
Kim S J, Kim H H, Kwona J B, et al. Novel fabrication of various size ZnO nanorods using hydrothermal method. Microelectron Eng, 2010, 87:1534 doi: 10.1016/j.mee.2009.11.033
[2]
Djurisic A B, Ng A M C, Chen X Y. ZnO nanostructures for optoelectronics:material properties and device applications. Progress in Quantum Electron, 2010, 34:191 doi: 10.1016/j.pquantelec.2010.04.001
[3]
Akhtar M S, Khan M A, Jeon M S, et al. Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells. Electrochimica Acta, 2008, 53:7869 doi: 10.1016/j.electacta.2008.05.055
[4]
Das N C, Sokol P E. Hybrid photovoltaic devices from regioregular polythiophene and ZnO nanoparticles composites. Renewable Energy, 2010, 35:2683 doi: 10.1016/j.renene.2010.04.014
[5]
Ma J, Liu J, Bao Y, et al. Synthesis of large-scale uniform mulberry-like ZnO particles with microwave hydrothermal method and its antibacterial property. Ceramics International, 2013, 39:2803 doi: 10.1016/j.ceramint.2012.09.049
[6]
Liu Y L, Yang Y H, Yang H F, et al. Nanosized flower-like ZnO synthesized by a simple hydrothermal method and applied as matrix for horseradish peroxidase immobilization for electro-biosensing. Journal of Inorganic Biochemistry, 2005, 99:2046 doi: 10.1016/j.jinorgbio.2005.07.001
[7]
Sun L, Shao R, Chen Z, et al. Alkali-dependent synthesis of flower-like ZnO structures with enhanced photocatalytic activity via a facile hydrothermal method. Appl Surf Sci, 2012, 258:5455 doi: 10.1016/j.apsusc.2012.02.034
[8]
Donkova B, Dimitrov D, Kostadinov M, et al. Catalytic and photocatalytic activity of lightly doped catalysts M:ZnO (M=Cu, Mn). Mater Chem Phys, 2010, 123:563 doi: 10.1016/j.matchemphys.2010.05.015
[9]
Xie J, Wang H, Duan M. Synthesis and photocatalysis properties of ZnO structures with different morphologies via hydrothermal method. Appl Surf Sci, 2011, 257:6358 doi: 10.1016/j.apsusc.2011.01.105
[10]
Qiuxiang Z, Ke Y, Wei B, et al. Synthesis, optical and field emission properties of three different ZnO nanostructures. Mater Lett, 2007, 61:3890 doi: 10.1016/j.matlet.2006.12.064
[11]
Li Z, Huang X, Liu J, et al. Morphology control and transition of ZnO nanorod arrays by a simple hydrothermal method. Mater Lett, 2008, 62:1503 doi: 10.1016/j.matlet.2007.09.011
[12]
Kim J Y, Cho J W, Kim S H. The characteristic of the ZnO nanowire morphology grown by the hydrothermal method on various surface-treated seed layers. Mater Lett, 2011, 65:1161 doi: 10.1016/j.matlet.2010.10.092
[13]
Tao Y, Fu M, Zhao A, et al. The effect of seed layer on morphology of ZnO nanorod arrays grown by hydrothermal method. Journal of Alloys and Compounds, 2010, 489:99 doi: 10.1016/j.jallcom.2009.09.020
[14]
Wang Z, Huang B, Qin X, et al. Growth of high transmittance vertical aligned ZnO nanorod arrays with polyvinyl alcohol by hydrothermal method. Mater Lett, 2009, 63:130 doi: 10.1016/j.matlet.2008.09.042
[15]
Zhou Z, Zhao Y, Cai Z. Low-temperature growth of ZnOnanorods on PET fabrics with two-step hydrothermal method. Appl Surf Sci, 2010, 256:4724 doi: 10.1016/j.apsusc.2010.02.081
[16]
Lv W, Wei B, Xua L, et al. Photocatalytic properties of hierarchical ZnO flowers synthesized by a sucrose-assisted hydrothermal method. Appl Surf Sci, 2012, 259:557 doi: 10.1016/j.apsusc.2012.04.182
[17]
Wang Y, Chen X, Zhang J, et al. Fabrication of surface-patterned and free-standing ZnO nanobowls. Colloids and Surfaces, 2008, A329:184
[18]
Chiu W S, Khiew P S, Isa D, et al. Synthesis of two-dimensional ZnO nanopellets by pyrolysis of zinc oleate. Chem Eng J, 2008, 142:337 doi: 10.1016/j.cej.2008.04.034
[19]
Bacsa R, Kihn Y, Verelst M, et al. Large scale synthesis of zinc oxide nanorods by homogeneous chemical vapor deposition and their characterization. Surface Coating Technology, 2007, 201:9200 doi: 10.1016/j.surfcoat.2007.04.037
[20]
Ozcan S, Can M M, Ceylan A. Single step synthesis of nanocrystalline ZnO via wet-milling. Mater Lett, 2010, 64:2447 doi: 10.1016/j.matlet.2010.08.012
[21]
Djouadi D, Aksas A, Chelouche A. Elaboration et Caractérisations structurale et optique des nanocristallites toriques de ZnO. Annales de Chimie-Science des Matériaux, 2010, 35(5):255 doi: 10.3166/acsm.35.255-260
[22]
Zak A K, Abdol Majid W H, Darroudi M, et al. Synthesis and characterization of ZnO nanoparticles prepared in gelatin media. Mater Lett, 2011, 65:70 doi: 10.1016/j.matlet.2010.09.029
[23]
Li Z, Huang X, Liu J, et al. Morphology control and transition of ZnO nanorod arrays by a simple hydrothermal method. Mater Lett, 2008, 62:1503 doi: 10.1016/j.matlet.2007.09.011
[24]
He Y, Wang J. A novel simple method to prepare ZnS whiskers. Mater Lett, 2008, 62:1379 doi: 10.1016/j.matlet.2007.08.059
[25]
Da Costa J P, Girão A V, Lourenço J P, et al. Synthesis of nanocrystalline ZnS using biologically generated sulfide. Hydrometallurgy, 2012, 117/118:57 doi: 10.1016/j.hydromet.2012.02.005
[26]
Barret C, Massalski T B. Structures of metals:crystallographic methods, principles and data. Oxford:Pergamon Press, 1980
[27]
Sofiani Z, Derkowska B, Dalasiñski P, et al. Optical properties of ZnO and ZnO:Ce layers grown by spray pyrolysis. Opt Commun, 2006, 267:433 doi: 10.1016/j.optcom.2006.06.049
[28]
Singhal S, Kaur J, Namgyal T, et al. Cu -doped ZnO nanoparticles:synthesis, structural and electrical properties. Physica B, 2012, 407:1223 doi: 10.1016/j.physb.2012.01.103
[29]
Ahsanulhaq Q, Umar A, Hahn Y B. Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution:growth mechanism and structural and optical properties. Nanotechnology, 2007, 18:115603 doi: 10.1088/0957-4484/18/11/115603
[30]
Lv W, Wei B, Xu L, et al. Photocatalytic properties of hierarchical ZnO flowers synthesized by a sucrose-assisted hydrothermal method. Appl Surf Sci, 2012, 259:557 doi: 10.1016/j.apsusc.2012.04.182
[31]
Kloprogge J T, Wharton D, Hickey L, et al. Infrared and Raman study of interlayer anions (CO3)2-, (NO3)-, (SO4)2- and (ClO4)- in Mg/Al-hydrotalcite. American Mineralogist, 2002, 87:623 doi: 10.2138/am-2002-5-604
[32]
Frost R L, Carmody O, Erickson K L, et al. Molecular structure of the uranyl mineral uranopilite-a Raman spectroscopic study. Journal of Molecular Structure, 2004, 733(1-3):203
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2285 Times PDF downloads: 8 Times Cited by: 0 Times

    History

    Received: 11 June 2014 Revised: 18 July 2014 Online: Published: 01 December 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      D. Djouadi, M. Meddouri, A. Chelouche, L. Hammiche, A. Aksas. Structural and morphological characterizations of ZnO nanopowder synthesized by hydrothermal route using inorganic reactants[J]. Journal of Semiconductors, 2014, 35(12): 123001. doi: 10.1088/1674-4926/35/12/123001 D. Djouadi, M. Meddouri, A. Chelouche, L. Hammiche, A. Aksas. Structural and morphological characterizations of ZnO nanopowder synthesized by hydrothermal route using inorganic reactants[J]. J. Semicond., 2014, 35(12): 123001. doi: 10.1088/1674-4926/35/12/123001.Export: BibTex EndNote
      Citation:
      D. Djouadi, M. Meddouri, A. Chelouche, L. Hammiche, A. Aksas. Structural and morphological characterizations of ZnO nanopowder synthesized by hydrothermal route using inorganic reactants[J]. Journal of Semiconductors, 2014, 35(12): 123001. doi: 10.1088/1674-4926/35/12/123001

      D. Djouadi, M. Meddouri, A. Chelouche, L. Hammiche, A. Aksas. Structural and morphological characterizations of ZnO nanopowder synthesized by hydrothermal route using inorganic reactants[J]. J. Semicond., 2014, 35(12): 123001. doi: 10.1088/1674-4926/35/12/123001.
      Export: BibTex EndNote

      Structural and morphological characterizations of ZnO nanopowder synthesized by hydrothermal route using inorganic reactants

      doi: 10.1088/1674-4926/35/12/123001
      More Information
      • Corresponding author: D. Djouadi, Email:djameldjouadi@yahoo.fr
      • Received Date: 2014-06-11
      • Revised Date: 2014-07-18
      • Published Date: 2014-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return