SEMICONDUCTOR DEVICES

A dynamic range extension scheme applied to a TDI CMOS image sensor

Chao Xu, Suying Yao, Jiangtao Xu, Zhiyuan Gao and Liqiang Han

+ Author Affiliations

 Corresponding author: Xu Jiangtao,xujiangtao@tju.edu.cn

PDF

Abstract: A dynamic range extension scheme applied to a time delay integration (TDI) CMOS image sensor (CIS) is presented. Two types of pixels with higher and lower conversion gain are adopted in the pixel array, which are suitable for capturing images in low and high illumination respectively. By fusing the two kinds of pixels' output signals in the process of TDI accumulation, a high dynamic range image can be achieved. Compared with the traditional multiple integration technique, no photoelectrons generated during the exposure time are discarded by the reset operation, and thus a higher level of signal-to-noise ratio (SNR) can be retained. A prototype chip with an 8×8 pixel array is implemented in a 0.18 μm CIS process, and the pixel size is 15×15 μm2. Test results show that a 76 dB dynamic range can be achieved in 8-stage TDI mode, when the SNR boost can reach 7.26 dB at 90.8 lux.

Key words: CMOS image sensortime delay integrationdynamic range extensiondigital domain



[1]
Decker S, McGrath D, Brehmer K, et al. A 256×256 CMOS imaging array with wide dynamic range pixels and column-parallel digital output. IEEE J Solid-State Circuits, 1998, 33(12):2081 doi: 10.1109/4.735551
[2]
Joseph D, Collins S. Transient response and fixed pattern noise in logarithmic CMOS image sensors. IEEE Sensors Journal, 2007, 7(8):1191 doi: 10.1109/JSEN.2007.900974
[3]
Amhaz H, Sicard G. A high output voltage swing logarithmic image sensor designed with on chip fpn reduction. IEEE PhD Research in Microelectronics and Electronics, 2010:1 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5587115
[4]
Mase M, Kawahito S, Sasaki M, et al. A wide dynamic range CMOS image sensor with multiple exposure-time signal outputs and 12-bit column-parallel cyclic A/D converters. IEEE J Solid-State Circuits, 2005, 40(12):2787 doi: 10.1109/JSSC.2005.858477
[5]
Park J H, Mase M, Kawahito S, et al. A 142 dB dynamic range CMOS image sensor with multiple exposure time signals. Asian Solid-State Circuits Conference, 2005:85 http://ieeexplore.ieee.org/document/1546253/
[6]
Yamada T, Kasuga S, Murata T, et al. A 140 dB-dynamic-range MOS image sensor with in-pixel multiple-exposure synthesis. IEEE International Solid-State Circuits Conference, 2008:50 http://www.freepatentsonline.com/y2012/0281126.html
[7]
Li Binqiao, Sun Zhongyan, Xu Jiangtao. Wide dynamic range CMOS image sensor with in-pixel double-exposure and synthesis. Journal of Semiconductors, 2010, 31(5):055002 doi: 10.1088/1674-4926/31/5/055002
[8]
Lepage G, Bogaerts J, Meynants G. Time-delay-integration architectures in CMOS image sensors. IEEE Trans Electron Devices, 2009, 56(11):2524 doi: 10.1109/TED.2009.2030648
[9]
Chang J H, Cheng K W, Hsieh C C, et al. Linear CMOS image sensor with time-delay integration and interlaced super-resolution pixel. IEEE Sensors, 2012:1 http://ieeexplore.ieee.org/document/6411292/authors
[10]
Cheng K W, Yin C, Hsieh C C, et al. Time-delay integration readout with adjacent pixel signal transfer for CMOS image sensor. IEEE International Symposium on VLSI Design, Automation, and Test, 2012:1
[11]
Nie K, Yao S, Xu J, et al. Thirty two-stage CMOS TDI image sensor with on-chip analog accumulator. IEEE Trans Very Large Scale Integration Systems, 2013, Digital Object Identifier:10.1109/TVLSI.2013.2256809
[12]
Xu C, Yao S, Xu J, et al. In-pixel charge addition scheme applied in time-delay integration CMOS image sensors. Transactions of Tianjin University, 2013, 19:140 doi: 10.1007/s12209-013-1997-5
[13]
Li Weiping, Xu Jiangtao, Xu Chao, et al. Collection efficiency and charge transfer optimization for a 4-T pixel with multi n-type implants. Journal of Semiconductors, 2011, 32(12):124008 doi: 10.1088/1674-4926/32/12/124008
[14]
Li Yiqiang, Li Binqiao, Xu Jiangtao, et al. Charge transfer efficiency improvement of a 4-T pixel by the optimization of electrical potential distribution under the transfer gate. Journal of Semiconductors, 2012, 33(12):124004 doi: 10.1088/1674-4926/33/12/124004
Fig. 1.  Diagram of the TDI operation principle.

Fig. 2.  Timing diagrams. (a) Normal multiple integration technology.(b) Optional multiple integration technology for a TDI CIS. (c) Proposed DRE scheme for a TDI CIS.

Fig. 3.  Layouts of high conversion gain pixels. (a) Typical structure. (b) Optimized structure with a wide transfer gate.

Fig. 4.  3D electrostatic potential distributions. (a) Typical structure. (b) Optimized structure with wide transfer gate. 2D cross sections along the cutting planes. (c) Typical structure. (d) Optimized structure with a wide transfer gate.

Fig. 5.  Test results about charge transfer.

Fig. 6.  Diagram of a digital TDI CIS.

Fig. 7.  Diagram of bit omission operation.

Fig. 8.  Effect of bits omission on SNR.

Fig. 9.  Photo response curves of different pixels.

Fig. 10.  SNR curves of different pixels.

Fig. 11.  Photo response curves before and after the fusion process.

Fig. 12.  SNR curves before and after fusion process.

Table 1.   Performance summary and comparison.

[1]
Decker S, McGrath D, Brehmer K, et al. A 256×256 CMOS imaging array with wide dynamic range pixels and column-parallel digital output. IEEE J Solid-State Circuits, 1998, 33(12):2081 doi: 10.1109/4.735551
[2]
Joseph D, Collins S. Transient response and fixed pattern noise in logarithmic CMOS image sensors. IEEE Sensors Journal, 2007, 7(8):1191 doi: 10.1109/JSEN.2007.900974
[3]
Amhaz H, Sicard G. A high output voltage swing logarithmic image sensor designed with on chip fpn reduction. IEEE PhD Research in Microelectronics and Electronics, 2010:1 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5587115
[4]
Mase M, Kawahito S, Sasaki M, et al. A wide dynamic range CMOS image sensor with multiple exposure-time signal outputs and 12-bit column-parallel cyclic A/D converters. IEEE J Solid-State Circuits, 2005, 40(12):2787 doi: 10.1109/JSSC.2005.858477
[5]
Park J H, Mase M, Kawahito S, et al. A 142 dB dynamic range CMOS image sensor with multiple exposure time signals. Asian Solid-State Circuits Conference, 2005:85 http://ieeexplore.ieee.org/document/1546253/
[6]
Yamada T, Kasuga S, Murata T, et al. A 140 dB-dynamic-range MOS image sensor with in-pixel multiple-exposure synthesis. IEEE International Solid-State Circuits Conference, 2008:50 http://www.freepatentsonline.com/y2012/0281126.html
[7]
Li Binqiao, Sun Zhongyan, Xu Jiangtao. Wide dynamic range CMOS image sensor with in-pixel double-exposure and synthesis. Journal of Semiconductors, 2010, 31(5):055002 doi: 10.1088/1674-4926/31/5/055002
[8]
Lepage G, Bogaerts J, Meynants G. Time-delay-integration architectures in CMOS image sensors. IEEE Trans Electron Devices, 2009, 56(11):2524 doi: 10.1109/TED.2009.2030648
[9]
Chang J H, Cheng K W, Hsieh C C, et al. Linear CMOS image sensor with time-delay integration and interlaced super-resolution pixel. IEEE Sensors, 2012:1 http://ieeexplore.ieee.org/document/6411292/authors
[10]
Cheng K W, Yin C, Hsieh C C, et al. Time-delay integration readout with adjacent pixel signal transfer for CMOS image sensor. IEEE International Symposium on VLSI Design, Automation, and Test, 2012:1
[11]
Nie K, Yao S, Xu J, et al. Thirty two-stage CMOS TDI image sensor with on-chip analog accumulator. IEEE Trans Very Large Scale Integration Systems, 2013, Digital Object Identifier:10.1109/TVLSI.2013.2256809
[12]
Xu C, Yao S, Xu J, et al. In-pixel charge addition scheme applied in time-delay integration CMOS image sensors. Transactions of Tianjin University, 2013, 19:140 doi: 10.1007/s12209-013-1997-5
[13]
Li Weiping, Xu Jiangtao, Xu Chao, et al. Collection efficiency and charge transfer optimization for a 4-T pixel with multi n-type implants. Journal of Semiconductors, 2011, 32(12):124008 doi: 10.1088/1674-4926/32/12/124008
[14]
Li Yiqiang, Li Binqiao, Xu Jiangtao, et al. Charge transfer efficiency improvement of a 4-T pixel by the optimization of electrical potential distribution under the transfer gate. Journal of Semiconductors, 2012, 33(12):124004 doi: 10.1088/1674-4926/33/12/124004
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2543 Times PDF downloads: 25 Times Cited by: 0 Times

    History

    Received: 23 August 2013 Revised: 11 September 2013 Online: Published: 01 February 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Chao Xu, Suying Yao, Jiangtao Xu, Zhiyuan Gao, Liqiang Han. A dynamic range extension scheme applied to a TDI CMOS image sensor[J]. Journal of Semiconductors, 2014, 35(2): 024013. doi: 10.1088/1674-4926/35/2/024013 C Xu, S Y Yao, J T Xu, Z Y Gao, L Q Han. A dynamic range extension scheme applied to a TDI CMOS image sensor[J]. J. Semicond., 2014, 35(2): 024013. doi: 10.1088/1674-4926/35/2/024013.Export: BibTex EndNote
      Citation:
      Chao Xu, Suying Yao, Jiangtao Xu, Zhiyuan Gao, Liqiang Han. A dynamic range extension scheme applied to a TDI CMOS image sensor[J]. Journal of Semiconductors, 2014, 35(2): 024013. doi: 10.1088/1674-4926/35/2/024013

      C Xu, S Y Yao, J T Xu, Z Y Gao, L Q Han. A dynamic range extension scheme applied to a TDI CMOS image sensor[J]. J. Semicond., 2014, 35(2): 024013. doi: 10.1088/1674-4926/35/2/024013.
      Export: BibTex EndNote

      A dynamic range extension scheme applied to a TDI CMOS image sensor

      doi: 10.1088/1674-4926/35/2/024013
      Funds:

      the National Natural Science Foundation of China 61076024

      the National Natural Science Foundation of China 61036004

      Project supported by the National Natural Science Foundation of China (Nos. 61036004, 61076024).

      More Information
      • Corresponding author: Xu Jiangtao,xujiangtao@tju.edu.cn
      • Received Date: 2013-08-23
      • Revised Date: 2013-09-11
      • Published Date: 2014-02-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return