SEMICONDUCTOR DEVICES

Potentiality of semiconducting diamond as the base material of millimeter-wave and terahertz IMPATT devices

Aritra Acharyya1, , Suranjana Banerjee2 and J. P. Banerjee1

+ Author Affiliations

 Corresponding author: Aritra Acharyya, Email:ari_besu@yahoo.co.in

PDF

Abstract: An attempt is made in this paper to explore the potentiality of semiconducting type-Ⅱb diamond as the base material of double-drift region (DDR) impact avalanche transit time (IMPATT) devices operating at both millimetre-wave (mm-wave) and terahertz (THz) frequencies. A rigorous large-signal (L-S) simulation based on the non-sinusoidal voltage excitation (NSVE) model developed earlier by the authors is used in this study. At first, a simulation study based on avalanche response time reveals that the upper cut-off frequency for DDR diamond IMPATTs is 1.5 THz, while the same for conventional DDR Si IMPATTs is much smaller, i.e. 0.5 THz. The L-S simulation results show that the DDR diamond IMPATT device delivers a peak RF power of 7.79 W with an 18.17% conversion efficiency at 94 GHz; while at 1.5 THz, the peak power output and conversion efficiency decrease to 6.19 mW and 8.17% respectively, taking 50% voltage modulation. A comparative study of DDR IMPATTs based on diamond and Si shows that the former excels over the later as regards high frequency and high power performance at both mm-wave and THz frequency bands. The effect of band to band tunneling on the L-S properties of DDR diamond and Si IMPATTs has also been studied at different mm-wave and THz frequencies.

Key words: diamond IMPATTsDDRlarge-signal simulationmillimeter-waveterahertz



[1]
Chan W L, Deibel J, Mittleman D M. Imaging with terahertz radiation. Rep Prog Phys, 2007, 70:1325 doi: 10.1088/0034-4885/70/8/R02
[2]
Grischkowsky D, Keiding S, Exter M, et al. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J Opt Soc Am B, 1990, 7:2006 doi: 10.1364/JOSAB.7.002006
[3]
Debus C, Bolivar P H. Frequency selective surfaces for high sensitivity terahertz sensing. Appl Phys Lett, 2007, 91:184102 doi: 10.1063/1.2805016
[4]
Yasui T, Yasuda T, Sawanaka K, et al. Terahertz parameter for noncontact monitoring of thickness and drying progress in paint film. Appl Opt, 2005, 44:6849 doi: 10.1364/AO.44.006849
[5]
Stoik C D, Bohn M J, Blackshire J L. Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy. Opt Express, 2008, 16:17039 doi: 10.1364/OE.16.017039
[6]
Jördens C, Koch M. Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy. Opt Eng, 2008, 47:037003 doi: 10.1117/1.2896597
[7]
Fitzgerald A J, Cole B E, Taday P F. Nondestructive analysis of tablet coating thicknesses using terahertz pulsed imaging. J Pharm Sci, 2005, 94:177 doi: 10.1002/jps.20225
[8]
Siegel P H. Terahertz technology in biology and medicine. IEEE Trans Microw Theory Tech, 2004, 52:2438 doi: 10.1109/TMTT.2004.835916
[9]
Siegel P H. THz Instruments for space. IEEE Trans Antenn Propag, 2007, 55:2957 doi: 10.1109/TAP.2007.908557
[10]
Lynch S A, Paul D J, Townsend P, et al. Silicon quantum cascade lasers for THz sources. Proc 18th Annual Meeting of the IEEE on Lasers and Electro-Optics Society, Leos, 2005:728 http://ieeexplore.ieee.org/document/1548213/
[11]
Seo M, Urteaga M, Hacker J, et al. InP HBT IC technology for terahertz frequencies:fundamental oscillators up to 0.57 THz. IEEE J Solid-State Circuits, 2011, 46:2203 doi: 10.1109/JSSC.2011.2163213
[12]
Midford T A, Bernick R L. Millimeter wave CW IMPATT diodes and oscillators. IEEE Trans Microw Theory Tech, 1979, 27:483 doi: 10.1109/TMTT.1979.1129653
[13]
Luy J F, Casel A, Behr W, et al. A 90-GHz double-drift IMPATT diode made with Si MBE. IEEE Trans Electron Devices, 1987, 34:1084 doi: 10.1109/T-ED.1987.23049
[14]
Dalle C, Rolland P, Lieti G. Flat doping profile double-drift silicon IMPATT for reliable CW high power high-efficiency generation in the 94-GHz window. IEEE Trans Electron Devices, 1990, 37:227 doi: 10.1109/16.43820
[15]
Wollitzer M, Buchler J, Schafflr F, et al. D-band Si-IMPATT diodes with 300 mW CW output power at 140 GHz. Electron Lett, 1996, 32:122 doi: 10.1049/el:19960088
[16]
Eisele H, Hadded G I. GaAs TUNNETT diodes on diamond heat sinks for 100 GHz and above. IEEE Trans Microw Theory Tech, 1995, 43:210 doi: 10.1109/22.362989
[17]
Eisele H, Chen C C, Munns G O, et al. The potential of InP IMPATT diodes as high-power millimeter-wave sources:first experimental results. IEEE MTT-S International Microwave Symposium Digest, 1996, 2:529 http://ieeexplore.ieee.org/document/510989/
[18]
Yuan A, James J, Cooper A, et al. Experimental demonstration of a silicon carbide IMPATT oscillator. IEEE Electron Device Lett, 2001, 22:266 doi: 10.1109/55.924837
[19]
Vassilevski K V, Zorenko A V, Zekentes K, et al. 4H-SiC IMPATT diode fabrication and testing. Technical Digest of International Conference on SiC and Related Materials, Tsukuba, Japan, 2001:713 https://www.scientific.net/MSF.389-393.1353
[20]
Panda A K, Pavlidis D, Alekseev E. DC and high-frequency characteristics of GaN-based IMPATTs. IEEE Trans Electron Devices, 2001, 48:820 doi: 10.1109/16.915735
[21]
Acharyya A, Banerjee J P. Potentiality of IMPATT devices as terahertz source:an Avalanche response time based approach to determine the upper cut-off frequency limits. IETE Journal of Research, 2013, 59:118 doi: 10.4103/0377-2063.113029
[22]
Acharyya A, Banerjee J P. Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources. Applied Nanoscience, 2012:DOI 10.1007/s13204-012-0172-y doi: 10.1007/s13204-012-0172-y
[23]
Trew R J, Yan J B, Mock P M. The potentiality of diamond and SiC electronic devices for microwave and millimeter-wave power applications. Proc IEEE, 1991, 79:598 doi: 10.1109/5.90128
[24]
Osman M A, Andrews G, Kreskovsky J P, et al. Numerical simulation studies of semiconducting diamond electronic devices. Final Report on Contract DNA001-87-C-0250, Defense Nuclear Agency, 1989
[25]
Acharyya A, Datta K, Ghosh R, et al. Diamond based DDR IMPATTs:prospects and potentiality as millimeter-wave source at 94 GHz atmospheric window. Radioengineering, 2013, 22:624 https://dspace.vutbr.cz/xmlui/handle/11012/36894?show=full
[26]
Mock P. M, Trew R J. RF performance characteristics of double-drift MM-wave diamond IMPATT diodes. Proc IEEE/Cornell Conf. Advanced Concepts in High-Speed Semiconductor Devices and Circuits, 1989:383
[27]
Miswa T. Negative resistance in p-n junctions under avalanche breakdown conditions. IEEE Trans Electron Devices, 1966, 33:137
[28]
Gilden M, Hines M E. Electronic tuning effects in the read microwave Avalanche diode. IEEE Trans Electron Devices, 1966, 13(1):169 http://ieeexplore.ieee.org/document/1474242/
[29]
Gummel H K, Scharfetter D L. Avalanche region of IMPATT diodes. Bell Sys Tech J, 1966, 45:1797 doi: 10.1002/bltj.1966.45.issue-10
[30]
Evans W J, Haddad G I. A Large-signal analysis of IMPATT diodes. IEEE Trans Electron Devices, 1968, 15(10):708 doi: 10.1109/T-ED.1968.16503
[31]
Scharfetter D L, Gummel H K. Large-signal analysis of a silicon read diode oscillator. IEEE Trans Electron Devices, 1969, 6(1):64 http://ieeexplore.ieee.org/document/1475609/
[32]
Gupta M S, Lomax R J. A Current-excited large-signal analysis of IMPATT devices and its circuit implementations. IEEE Trans Electron Devices, 1973, 20:395 doi: 10.1109/T-ED.1973.17661
[33]
Acharyya A, Banerjee S, Banerjee J P. A proposed simulation technique to study the series resistance and related millimeter-wave properties of Ka-band Si IMPATTs from the electric field snap-shots. International Journal of Microwave and Wireless Technologies, 2013, 5:91 doi: 10.1017/S1759078712000839
[34]
Acharyya A, Chakraborty J, Das K, et al. Large-signal characterization of DDR silicon IMPATTs operating up to 0.5 THz. International Journal of Microwave and Wireless Technologies, 2013, 5:567 doi: 10.1017/S1759078713000597
[35]
Acharyya A, Chakraborty J, Das K, et al. Large-signal characterization of DDR silicon IMPATTs operating in millimeter-wave and terahertz regime. Journal of Semiconductors, 2013, 34:104003 doi: 10.1088/1674-4926/34/10/104003
[36]
Acharyya A, Banerjee S, Banerjee J P. Influence of skin effect on the series resistance of millimeter-wave IMPATT devices. Journal of Computational Electronics, 2013, 12:511 doi: 10.1007/s10825-013-0470-y
[37]
Acharyya A, Mukherjee M, Banerjee J P. Effects of tunnelling current on mm-wave IMPATT devices. International Journal of Electronics, 2013, in press doi: 10.1080/00207217.2014.982211?needAccess=true&journalCode=tetn20
[38]
Acharyya A, Mukherjee M, Banerjee J P. Influence of tunnel current on DC and dynamic properties of silicon based terahertz IMPATT source. Terahertz Science and Technology, 2011, 4:26 http://www.tstnetwork.org/March2011/tst-v4n1-26Influence.pdf
[39]
Konorova E A, Kuznetsov Y A, Sergienko V F, et al. Impact ionization in semiconductor structures made of ion-implanted diamond. Sov Phys Semicond, 1983, 17:146
[40]
Grant W N. Electron and hole ionization rates in epitaxial silicon. Solid State Electron, 1973, 16:1189 doi: 10.1016/0038-1101(73)90147-0
[41]
Ferry D K. High-field transport in wide-bandgap semiconductors. Phys Rev B, 1975, 12:2361
[42]
Canali C, Gatti E, Kozlov S F, et al. Electrical properties and performances of neutral diamond nuclear radiation detectors. Nucl Instrum Methods, 1979, 160:73 doi: 10.1016/0029-554X(79)90167-8
[43]
Canali C, Ottaviani G, Quaranta A A. Drift velocity of electrons and holes and associated anisotropic effects in silicon. J Phys Chem Solids, 1971, 32:1707 doi: 10.1016/S0022-3697(71)80137-3
[44]
[45]
Sze S M, Ryder R M. Microwave Avalanche diodes. Proc IEEE, Special Issue on Microwave Semiconductor Devices, 1971, 59:1140 http://ieeexplore.ieee.org/abstract/document/1450290/
[46]
Sridharan M, Roy S K. Computer studies on the widening of the avalanche zone and decrease on efficiency in silicon X-band symmetrical DDR. Electron Lett, 1978, 14:635 doi: 10.1049/el:19780427
Fig. 1.  (a) One-dimensional model of DDR IMPATT device. (b) Voltage driven IMPATT diode oscillator and associated circuit.

Fig. 2.  Variations of DC to RF conversion efficiency, breakdown voltage and peak electric field with optimum frequency of DDR diamond and Si IMPATTs.

Fig. 3.  Variations of avalanche response time and transit time with optimum frequency of DDR diamond and Si IMPATTs.

Fig. 4.  Large-signal electric field snap-shots of 94 GHz DDR diamond IMPATT at each quarter cycle of steady-state oscillation (a) $\omega =$ 0, (b) $\omega = \pi $/2, (c) $\omega = \pi $, (d) $\omega = 3\pi$/2 and (e) $\omega = 2\pi$ for different bias current densities taking 60% voltage modulation.

Fig. 5.  Variations of RF power output and large-signal DC to RF conversion efficiency of 94 GHz DDR Diamond IMPATT with RF voltage at different bias current densities.

Fig. 6.  Admittance characteristics of 94, 140, 220 and 300 GHz DDR diamond and Si IMPATTs.

Fig. 7.  Admittance characteristics of 500 GHz DDR Si IMPATT and 500 GHz, 1.0 THz and 1.5 THz DDR diamond IMPATTs.

Fig. 8.  Variations of RF power output and large-signal DC to RF conversion efficiency with optimum frequency of DDR diamond and Si IMPATTs.

Fig. 8.  Variations of RF power output and large-signal DC to RF conversion efficiency with optimum frequency of DDR diamond and Si IMPATTs.

Table 1.   Structural and doping parameters.

Table 2.   Static parameters of DDR diamond and Si IMPATTs designed to operate at different mm-wave and THz frequencies.

Table 3.   Punch through factors of 94 GHz DDR diamond IMPATT for different bias current densities at different phase angles.

Table 4.   Large-signal parameters of DDR diamond and Si IMPATTs designed to operate at different mm-wave and THz frequencies for 50% voltage modulation.

Table 5.   Peak tunneling generation rates ($q G_{\rm Tpeak})$, peak avalanche generation rates ($q G_{\rm Apeak})$ in DDR diamond and Si IMPATTs at different mm-wave and THz frequencies for 50% voltage modulation.

Table 6.   The sensitivity analysis and the effect of tunneling on the L-S properties of DDR diamond and Si IMPATTs at different mm-wave and THz frequencies by taking 50% voltage modulation.

[1]
Chan W L, Deibel J, Mittleman D M. Imaging with terahertz radiation. Rep Prog Phys, 2007, 70:1325 doi: 10.1088/0034-4885/70/8/R02
[2]
Grischkowsky D, Keiding S, Exter M, et al. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J Opt Soc Am B, 1990, 7:2006 doi: 10.1364/JOSAB.7.002006
[3]
Debus C, Bolivar P H. Frequency selective surfaces for high sensitivity terahertz sensing. Appl Phys Lett, 2007, 91:184102 doi: 10.1063/1.2805016
[4]
Yasui T, Yasuda T, Sawanaka K, et al. Terahertz parameter for noncontact monitoring of thickness and drying progress in paint film. Appl Opt, 2005, 44:6849 doi: 10.1364/AO.44.006849
[5]
Stoik C D, Bohn M J, Blackshire J L. Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy. Opt Express, 2008, 16:17039 doi: 10.1364/OE.16.017039
[6]
Jördens C, Koch M. Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy. Opt Eng, 2008, 47:037003 doi: 10.1117/1.2896597
[7]
Fitzgerald A J, Cole B E, Taday P F. Nondestructive analysis of tablet coating thicknesses using terahertz pulsed imaging. J Pharm Sci, 2005, 94:177 doi: 10.1002/jps.20225
[8]
Siegel P H. Terahertz technology in biology and medicine. IEEE Trans Microw Theory Tech, 2004, 52:2438 doi: 10.1109/TMTT.2004.835916
[9]
Siegel P H. THz Instruments for space. IEEE Trans Antenn Propag, 2007, 55:2957 doi: 10.1109/TAP.2007.908557
[10]
Lynch S A, Paul D J, Townsend P, et al. Silicon quantum cascade lasers for THz sources. Proc 18th Annual Meeting of the IEEE on Lasers and Electro-Optics Society, Leos, 2005:728 http://ieeexplore.ieee.org/document/1548213/
[11]
Seo M, Urteaga M, Hacker J, et al. InP HBT IC technology for terahertz frequencies:fundamental oscillators up to 0.57 THz. IEEE J Solid-State Circuits, 2011, 46:2203 doi: 10.1109/JSSC.2011.2163213
[12]
Midford T A, Bernick R L. Millimeter wave CW IMPATT diodes and oscillators. IEEE Trans Microw Theory Tech, 1979, 27:483 doi: 10.1109/TMTT.1979.1129653
[13]
Luy J F, Casel A, Behr W, et al. A 90-GHz double-drift IMPATT diode made with Si MBE. IEEE Trans Electron Devices, 1987, 34:1084 doi: 10.1109/T-ED.1987.23049
[14]
Dalle C, Rolland P, Lieti G. Flat doping profile double-drift silicon IMPATT for reliable CW high power high-efficiency generation in the 94-GHz window. IEEE Trans Electron Devices, 1990, 37:227 doi: 10.1109/16.43820
[15]
Wollitzer M, Buchler J, Schafflr F, et al. D-band Si-IMPATT diodes with 300 mW CW output power at 140 GHz. Electron Lett, 1996, 32:122 doi: 10.1049/el:19960088
[16]
Eisele H, Hadded G I. GaAs TUNNETT diodes on diamond heat sinks for 100 GHz and above. IEEE Trans Microw Theory Tech, 1995, 43:210 doi: 10.1109/22.362989
[17]
Eisele H, Chen C C, Munns G O, et al. The potential of InP IMPATT diodes as high-power millimeter-wave sources:first experimental results. IEEE MTT-S International Microwave Symposium Digest, 1996, 2:529 http://ieeexplore.ieee.org/document/510989/
[18]
Yuan A, James J, Cooper A, et al. Experimental demonstration of a silicon carbide IMPATT oscillator. IEEE Electron Device Lett, 2001, 22:266 doi: 10.1109/55.924837
[19]
Vassilevski K V, Zorenko A V, Zekentes K, et al. 4H-SiC IMPATT diode fabrication and testing. Technical Digest of International Conference on SiC and Related Materials, Tsukuba, Japan, 2001:713 https://www.scientific.net/MSF.389-393.1353
[20]
Panda A K, Pavlidis D, Alekseev E. DC and high-frequency characteristics of GaN-based IMPATTs. IEEE Trans Electron Devices, 2001, 48:820 doi: 10.1109/16.915735
[21]
Acharyya A, Banerjee J P. Potentiality of IMPATT devices as terahertz source:an Avalanche response time based approach to determine the upper cut-off frequency limits. IETE Journal of Research, 2013, 59:118 doi: 10.4103/0377-2063.113029
[22]
Acharyya A, Banerjee J P. Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources. Applied Nanoscience, 2012:DOI 10.1007/s13204-012-0172-y doi: 10.1007/s13204-012-0172-y
[23]
Trew R J, Yan J B, Mock P M. The potentiality of diamond and SiC electronic devices for microwave and millimeter-wave power applications. Proc IEEE, 1991, 79:598 doi: 10.1109/5.90128
[24]
Osman M A, Andrews G, Kreskovsky J P, et al. Numerical simulation studies of semiconducting diamond electronic devices. Final Report on Contract DNA001-87-C-0250, Defense Nuclear Agency, 1989
[25]
Acharyya A, Datta K, Ghosh R, et al. Diamond based DDR IMPATTs:prospects and potentiality as millimeter-wave source at 94 GHz atmospheric window. Radioengineering, 2013, 22:624 https://dspace.vutbr.cz/xmlui/handle/11012/36894?show=full
[26]
Mock P. M, Trew R J. RF performance characteristics of double-drift MM-wave diamond IMPATT diodes. Proc IEEE/Cornell Conf. Advanced Concepts in High-Speed Semiconductor Devices and Circuits, 1989:383
[27]
Miswa T. Negative resistance in p-n junctions under avalanche breakdown conditions. IEEE Trans Electron Devices, 1966, 33:137
[28]
Gilden M, Hines M E. Electronic tuning effects in the read microwave Avalanche diode. IEEE Trans Electron Devices, 1966, 13(1):169 http://ieeexplore.ieee.org/document/1474242/
[29]
Gummel H K, Scharfetter D L. Avalanche region of IMPATT diodes. Bell Sys Tech J, 1966, 45:1797 doi: 10.1002/bltj.1966.45.issue-10
[30]
Evans W J, Haddad G I. A Large-signal analysis of IMPATT diodes. IEEE Trans Electron Devices, 1968, 15(10):708 doi: 10.1109/T-ED.1968.16503
[31]
Scharfetter D L, Gummel H K. Large-signal analysis of a silicon read diode oscillator. IEEE Trans Electron Devices, 1969, 6(1):64 http://ieeexplore.ieee.org/document/1475609/
[32]
Gupta M S, Lomax R J. A Current-excited large-signal analysis of IMPATT devices and its circuit implementations. IEEE Trans Electron Devices, 1973, 20:395 doi: 10.1109/T-ED.1973.17661
[33]
Acharyya A, Banerjee S, Banerjee J P. A proposed simulation technique to study the series resistance and related millimeter-wave properties of Ka-band Si IMPATTs from the electric field snap-shots. International Journal of Microwave and Wireless Technologies, 2013, 5:91 doi: 10.1017/S1759078712000839
[34]
Acharyya A, Chakraborty J, Das K, et al. Large-signal characterization of DDR silicon IMPATTs operating up to 0.5 THz. International Journal of Microwave and Wireless Technologies, 2013, 5:567 doi: 10.1017/S1759078713000597
[35]
Acharyya A, Chakraborty J, Das K, et al. Large-signal characterization of DDR silicon IMPATTs operating in millimeter-wave and terahertz regime. Journal of Semiconductors, 2013, 34:104003 doi: 10.1088/1674-4926/34/10/104003
[36]
Acharyya A, Banerjee S, Banerjee J P. Influence of skin effect on the series resistance of millimeter-wave IMPATT devices. Journal of Computational Electronics, 2013, 12:511 doi: 10.1007/s10825-013-0470-y
[37]
Acharyya A, Mukherjee M, Banerjee J P. Effects of tunnelling current on mm-wave IMPATT devices. International Journal of Electronics, 2013, in press doi: 10.1080/00207217.2014.982211?needAccess=true&journalCode=tetn20
[38]
Acharyya A, Mukherjee M, Banerjee J P. Influence of tunnel current on DC and dynamic properties of silicon based terahertz IMPATT source. Terahertz Science and Technology, 2011, 4:26 http://www.tstnetwork.org/March2011/tst-v4n1-26Influence.pdf
[39]
Konorova E A, Kuznetsov Y A, Sergienko V F, et al. Impact ionization in semiconductor structures made of ion-implanted diamond. Sov Phys Semicond, 1983, 17:146
[40]
Grant W N. Electron and hole ionization rates in epitaxial silicon. Solid State Electron, 1973, 16:1189 doi: 10.1016/0038-1101(73)90147-0
[41]
Ferry D K. High-field transport in wide-bandgap semiconductors. Phys Rev B, 1975, 12:2361
[42]
Canali C, Gatti E, Kozlov S F, et al. Electrical properties and performances of neutral diamond nuclear radiation detectors. Nucl Instrum Methods, 1979, 160:73 doi: 10.1016/0029-554X(79)90167-8
[43]
Canali C, Ottaviani G, Quaranta A A. Drift velocity of electrons and holes and associated anisotropic effects in silicon. J Phys Chem Solids, 1971, 32:1707 doi: 10.1016/S0022-3697(71)80137-3
[44]
[45]
Sze S M, Ryder R M. Microwave Avalanche diodes. Proc IEEE, Special Issue on Microwave Semiconductor Devices, 1971, 59:1140 http://ieeexplore.ieee.org/abstract/document/1450290/
[46]
Sridharan M, Roy S K. Computer studies on the widening of the avalanche zone and decrease on efficiency in silicon X-band symmetrical DDR. Electron Lett, 1978, 14:635 doi: 10.1049/el:19780427
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2673 Times PDF downloads: 11 Times Cited by: 0 Times

    History

    Received: 14 July 2013 Revised: 14 October 2013 Online: Published: 01 March 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Aritra Acharyya, Suranjana Banerjee, J. P. Banerjee. Potentiality of semiconducting diamond as the base material of millimeter-wave and terahertz IMPATT devices[J]. Journal of Semiconductors, 2014, 35(3): 034005. doi: 10.1088/1674-4926/35/3/034005 A Acharyya, S Banerjee, J. P. Banerjee. Potentiality of semiconducting diamond as the base material of millimeter-wave and terahertz IMPATT devices[J]. J. Semicond., 2014, 35(3): 034005. doi: 10.1088/1674-4926/35/3/034005.Export: BibTex EndNote
      Citation:
      Aritra Acharyya, Suranjana Banerjee, J. P. Banerjee. Potentiality of semiconducting diamond as the base material of millimeter-wave and terahertz IMPATT devices[J]. Journal of Semiconductors, 2014, 35(3): 034005. doi: 10.1088/1674-4926/35/3/034005

      A Acharyya, S Banerjee, J. P. Banerjee. Potentiality of semiconducting diamond as the base material of millimeter-wave and terahertz IMPATT devices[J]. J. Semicond., 2014, 35(3): 034005. doi: 10.1088/1674-4926/35/3/034005.
      Export: BibTex EndNote

      Potentiality of semiconducting diamond as the base material of millimeter-wave and terahertz IMPATT devices

      doi: 10.1088/1674-4926/35/3/034005
      More Information
      • Corresponding author: Aritra Acharyya, Email:ari_besu@yahoo.co.in
      • Received Date: 2013-07-14
      • Revised Date: 2013-10-14
      • Published Date: 2014-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return