SEMICONDUCTOR DEVICES

Low noise wide bandgap SiC based IMPATT diodes at sub-millimeter wave frequencies and at high temperature

J. Pradhan1, , S. R. Pattanaik2, S. K. Swain1 and G. N. Dash1

+ Author Affiliations

 Corresponding author: J. Pradhan, Email:janmejaya74@gmail.com

PDF

Abstract: We have presented a comparative account of the high frequency prospective as well as noise behaviors of wide-bandgap 4H-SiC and 6H-SiC based on different structures of IMPATT diodes at sub-millimeter-wave frequencies up to 2.18 THz. The computer simulation study establishes the feasibility of the SiC based IMPATT diode as a high power density terahertz source. The most significant feature lies in the noise behavior of the SiC IMPATT diodes. It is noticed that the 6H-SiC DDR diode shows the least noise measure of 26.1 dB as compared to that of other structures. Further, it is noticed that the noise measure of the SiC IMPATT diode is less at a higher operating frequency compared to that at a lower operating frequency.

Key words: IMPATTsilicon carbideterahertz (THz) science



[1]
Tonouchi M. Cutting-edge terahertz technology. Nature Photonic, 2007, 1(2):97 doi: 10.1038/nphoton.2007.3
[2]
Jansen C, Wietzke S, Scheller M, et al. Applications for THz systems:approaching markets and perspectives for an innovative technology. Optik & Photonik, Wiley-VCH Verlag, 2008, 4:26 https://www.researchgate.net/publication/229619015_Applications_for_THz_Systems
[3]
Siegel P H. Terahertz technology. IEEE Trans Microw Theory Tech, 2002, 50(3):910 doi: 10.1109/22.989974
[4]
Siegel P H. Terahertz technology in biology and medicine. IEEE Trans Microw Theory Tech, 2004, 52(10):2438 doi: 10.1109/TMTT.2004.835916
[5]
Mueller E R. Terahertz radiation:applications and sources. The Industrial Physicist, 2003, 9:27
[6]
Farman J C, Gardiner B G, Shanklin J D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 1985, 315:207 doi: 10.1038/315207a0
[7]
Santee M L, Manney G L, Livesey N J, et al. Polar processing and development of the 2004 Antarctic ozone hole:first results from MLS on Aura. Geophys Res Lett, 2005, 32(12):L12817 doi: 10.1029/2005GL022582/full#references
[8]
Bi X, East J R, Ravaioli U, et al. Analysis and design of Si terahertz transit-time diodes. Proceedings of 16th International Symposium on Space Terahertz Technology (ISSTT), Chalmers, Sweden, 2005:271
[9]
Pradhan J, Swain S K, Pattanaik S R, et al. Competence of 4H-SiC IMPATT diode for terahertz application. Asian Journal of Physics, 2012, 21(2):175 https://www.researchgate.net/publication/261062242_Competence_of_4H-SiC_IMPATT_Diode_for_Terahertz_Application
[10]
Buniatyan V V, Aroutiounian V M. Wide gap semiconductor microwave devices. J Phys D:Appl Phys, 2007, 40(20):6355 doi: 10.1088/0022-3727/40/20/S18
[11]
Acharya A, Banerjee J P. Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources. Appl Nanosci, 2012, DOI: 10.1007/s13204-012-0172-y
[12]
Trew R J, Yan J B, Mock P M. The potential of diamond and SiC electronic devices for microwave and millimeter-wave power applications. Proc IEEE, 1991, 79:598 doi: 10.1109/5.90128
[13]
Davis R F, Khelner G, Shur M, et al. Thin film deposition and microelectronic and optoelectronic device fabrication and characterization in monocrystalline alpha and beta silicon carbide. Proc IEEE, 1991, 79:677 doi: 10.1109/5.90132
[14]
Pattanaik S R, Dash G N, Mishra J K. Prospects of 6H-SiC for operation as an IMPATT diode at 140 GHz. Semicond Sci Technol, 2005, 20(3):299 doi: 10.1088/0268-1242/20/3/008
[15]
Dash G N, Pati S P. Computer analysis of negative resistance profiles in silicon double drift diodes including the carrier diffusion effect. Phys Status Solidia, 1991, 127:577 doi: 10.1002/(ISSN)1521-396X
[16]
Raghunathan R, Baliga B J. Temperature dependence of hole impact onizationcoefficients in 4H and 6H-SiC. Solid-State Electron, 1999, 43(2):199 doi: 10.1016/S0038-1101(98)00248-2
[17]
Konstantinov A O. Influence of temperature on impact ionization and avalanche breakdown in silicon carbide. Soviet Phys Semicond, 1989, 23(1):31
[18]
Khan I A, Cooper J A Jr. Measurement of high-field electron transport in silicon carbide. IEEE Trans Electron Devices, 2000, 47:269 doi: 10.1109/16.822266
[19]
Electronic archive:New semiconductor materials, characteristics and properties[online], Available:http://www.ioffe.ru/SVA/NSM/Semicond/SiC/
[20]
Dash G N, Pati S P. A generalized simulation method for MITATT-mode operation and studies on the influence of tunnel current on IMPATT properties. Semicond Sci Technol, 1992, 7:222 doi: 10.1088/0268-1242/7/2/008
[21]
Dash G N, Mishra J K, Panda A K. Noise in mixed tunneling avalanched transit time (MITATT) diodes. Solid-State Electron, 1996, 39:1473 doi: 10.1016/0038-1101(96)00054-8
[22]
Mishra J K, Dash G N, Pattanaik S R, et al. Computer simulation study on the noise and millimeter wave properties of InP/GaInAs heterojunction double Avalanche region IMPATT diode. Solid-State Electron, 2004, 48(3):401 doi: 10.1016/j.sse.2003.07.005
Fig. 1.  Variation of negative conductance with frequency.

Fig. 2.  Variation of negative conductance with frequency.

Fig. 3.  Variation of mean square noise voltage per bandwidth with frequency.

Fig. 4.  Variation of mean square noise voltage per bandwidth with frequency.

Fig. 5.  Variation of breakdown voltage of SiC IMPATT DDR diodes with operating frequency.

Fig. 6.  Variation of peak negative conductance of SiC IMPATT DDR diodes with operating frequency.

Fig. 7.  Variation of noise measure of SiC IMPATT DDR diodes with operating frequency.

Table 1.   Material parameters of 6H-SiC and 4H-SiC.

Table 2.   Design parameters of 6H-SiC and 4H-SiC (SDR, DDR, high-low and low-high-low) at 2 THz.

Table 3.   DC and Small signal properties of 6H-SiC and 4H-SiC (SDR, DDR, high-low and low-high-low) IMPATT diodes at $J_{\rm o}$ $=$ 10 $\times $ 10$^{10}$ A/m$^{2}$ at the design frequency of 2 THz at 200 ℃.

Table 4.   Noise behavior of 6H-SiC and 4H-SiC (SDR, DDR, high-low and low-high-low) IMPATT diodes at $J_{\rm o}$ $=$ 10 $\times $ 10$^{10}$ A/m$^{2}$ with a design frequency of 2 THz at 200 ℃.

[1]
Tonouchi M. Cutting-edge terahertz technology. Nature Photonic, 2007, 1(2):97 doi: 10.1038/nphoton.2007.3
[2]
Jansen C, Wietzke S, Scheller M, et al. Applications for THz systems:approaching markets and perspectives for an innovative technology. Optik & Photonik, Wiley-VCH Verlag, 2008, 4:26 https://www.researchgate.net/publication/229619015_Applications_for_THz_Systems
[3]
Siegel P H. Terahertz technology. IEEE Trans Microw Theory Tech, 2002, 50(3):910 doi: 10.1109/22.989974
[4]
Siegel P H. Terahertz technology in biology and medicine. IEEE Trans Microw Theory Tech, 2004, 52(10):2438 doi: 10.1109/TMTT.2004.835916
[5]
Mueller E R. Terahertz radiation:applications and sources. The Industrial Physicist, 2003, 9:27
[6]
Farman J C, Gardiner B G, Shanklin J D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 1985, 315:207 doi: 10.1038/315207a0
[7]
Santee M L, Manney G L, Livesey N J, et al. Polar processing and development of the 2004 Antarctic ozone hole:first results from MLS on Aura. Geophys Res Lett, 2005, 32(12):L12817 doi: 10.1029/2005GL022582/full#references
[8]
Bi X, East J R, Ravaioli U, et al. Analysis and design of Si terahertz transit-time diodes. Proceedings of 16th International Symposium on Space Terahertz Technology (ISSTT), Chalmers, Sweden, 2005:271
[9]
Pradhan J, Swain S K, Pattanaik S R, et al. Competence of 4H-SiC IMPATT diode for terahertz application. Asian Journal of Physics, 2012, 21(2):175 https://www.researchgate.net/publication/261062242_Competence_of_4H-SiC_IMPATT_Diode_for_Terahertz_Application
[10]
Buniatyan V V, Aroutiounian V M. Wide gap semiconductor microwave devices. J Phys D:Appl Phys, 2007, 40(20):6355 doi: 10.1088/0022-3727/40/20/S18
[11]
Acharya A, Banerjee J P. Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources. Appl Nanosci, 2012, DOI: 10.1007/s13204-012-0172-y
[12]
Trew R J, Yan J B, Mock P M. The potential of diamond and SiC electronic devices for microwave and millimeter-wave power applications. Proc IEEE, 1991, 79:598 doi: 10.1109/5.90128
[13]
Davis R F, Khelner G, Shur M, et al. Thin film deposition and microelectronic and optoelectronic device fabrication and characterization in monocrystalline alpha and beta silicon carbide. Proc IEEE, 1991, 79:677 doi: 10.1109/5.90132
[14]
Pattanaik S R, Dash G N, Mishra J K. Prospects of 6H-SiC for operation as an IMPATT diode at 140 GHz. Semicond Sci Technol, 2005, 20(3):299 doi: 10.1088/0268-1242/20/3/008
[15]
Dash G N, Pati S P. Computer analysis of negative resistance profiles in silicon double drift diodes including the carrier diffusion effect. Phys Status Solidia, 1991, 127:577 doi: 10.1002/(ISSN)1521-396X
[16]
Raghunathan R, Baliga B J. Temperature dependence of hole impact onizationcoefficients in 4H and 6H-SiC. Solid-State Electron, 1999, 43(2):199 doi: 10.1016/S0038-1101(98)00248-2
[17]
Konstantinov A O. Influence of temperature on impact ionization and avalanche breakdown in silicon carbide. Soviet Phys Semicond, 1989, 23(1):31
[18]
Khan I A, Cooper J A Jr. Measurement of high-field electron transport in silicon carbide. IEEE Trans Electron Devices, 2000, 47:269 doi: 10.1109/16.822266
[19]
Electronic archive:New semiconductor materials, characteristics and properties[online], Available:http://www.ioffe.ru/SVA/NSM/Semicond/SiC/
[20]
Dash G N, Pati S P. A generalized simulation method for MITATT-mode operation and studies on the influence of tunnel current on IMPATT properties. Semicond Sci Technol, 1992, 7:222 doi: 10.1088/0268-1242/7/2/008
[21]
Dash G N, Mishra J K, Panda A K. Noise in mixed tunneling avalanched transit time (MITATT) diodes. Solid-State Electron, 1996, 39:1473 doi: 10.1016/0038-1101(96)00054-8
[22]
Mishra J K, Dash G N, Pattanaik S R, et al. Computer simulation study on the noise and millimeter wave properties of InP/GaInAs heterojunction double Avalanche region IMPATT diode. Solid-State Electron, 2004, 48(3):401 doi: 10.1016/j.sse.2003.07.005
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2445 Times PDF downloads: 9 Times Cited by: 0 Times

    History

    Received: 30 August 2013 Revised: 15 October 2013 Online: Published: 01 March 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      J. Pradhan, S. R. Pattanaik, S. K. Swain, G. N. Dash. Low noise wide bandgap SiC based IMPATT diodes at sub-millimeter wave frequencies and at high temperature[J]. Journal of Semiconductors, 2014, 35(3): 034006. doi: 10.1088/1674-4926/35/3/034006 J. Pradhan, S. R. Pattanaik, S. K. Swain, G. N. Dash. Low noise wide bandgap SiC based IMPATT diodes at sub-millimeter wave frequencies and at high temperature[J]. J. Semicond., 2014, 35(3): 034006. doi: 10.1088/1674-4926/35/3/034006.Export: BibTex EndNote
      Citation:
      J. Pradhan, S. R. Pattanaik, S. K. Swain, G. N. Dash. Low noise wide bandgap SiC based IMPATT diodes at sub-millimeter wave frequencies and at high temperature[J]. Journal of Semiconductors, 2014, 35(3): 034006. doi: 10.1088/1674-4926/35/3/034006

      J. Pradhan, S. R. Pattanaik, S. K. Swain, G. N. Dash. Low noise wide bandgap SiC based IMPATT diodes at sub-millimeter wave frequencies and at high temperature[J]. J. Semicond., 2014, 35(3): 034006. doi: 10.1088/1674-4926/35/3/034006.
      Export: BibTex EndNote

      Low noise wide bandgap SiC based IMPATT diodes at sub-millimeter wave frequencies and at high temperature

      doi: 10.1088/1674-4926/35/3/034006
      More Information
      • Corresponding author: J. Pradhan, Email:janmejaya74@gmail.com
      • Received Date: 2013-08-30
      • Revised Date: 2013-10-15
      • Published Date: 2014-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return