SEMICONDUCTOR DEVICES

A low-cost infrared absorbing structure for an uncooled infrared detector in a standard CMOS process

Ning Shen, Zhen'an Tang, Jun Yu and Zhengxing Huang

+ Author Affiliations

 Corresponding author: Tang Zhen'an, Email: tangza@dlut.edu.cn

PDF

Abstract: This paper introduces a low-cost infrared absorbing structure for an uncooled infrared detector in a standard 0.5 μm CMOS technology and post-CMOS process. The infrared absorbing structure can be created by etching the surface sacrificial layer after the CMOS fabrication, without any additional lithography and deposition procedures. An uncooled infrared microbolometer is fabricated with the proposed infrared absorbing structure. The microbolometer has a size of 65×65 μm2 and a fill factor of 37.8%. The thermal conductance of the microbolometer is calculated as 1.33×10-5 W/K from the measured response to different heating currents. The fabricated microbolometer is irradiated by an infrared laser, which is modulated by a mechanical chopper in a frequency range of 10-800 Hz. Measurements show that the thermal time constant is 0.995 ms and the thermal mass is 1.32×10-8 J/K. The responsivity of the microbolometer is about 3.03×104 V/W at 10 Hz and the calculated detectivity is 1.4×108 cm·Hz1/2/W.

Key words: infrared absorbing structureCMOS infrared detectorsmicrobolometerlow-cost infrared detectorsuncooled infrared detectors



[1]
Wood R A. Uncooled thermal imaging with monolithic silicon focal planes. P Soc Photo:Opt Ins 2020, 1993:322 http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.160553
[2]
Eminoglu S, Tanrikulu M Y, Akin T. A low-cost 128×128 uncooled infrared detector array in CMOS process. J Microelectromech S, 2008, 17(1):20 doi: 10.1109/JMEMS.2007.910235
[3]
Liu C C, Mastrangelo C H. A CMOS uncooled heatbalancing infrared imager. IEEE J Solid-State Circuits, 2000, 35(4):527 doi: 10.1109/4.839912
[4]
Zhang F X, Zhu Y F, Yang J L, et al. Sensitive detection of infrared photons using a high-Q microcantilever. Journal of Semiconductors, 2011, 32(9):094010 doi: 10.1088/1674-4926/32/9/094010
[5]
Gitelman L, Stolyarova S, Bar-Lev S, et al. CMOS-SOIMEMS transistor for uncooled IR imaging. IEEE Trans Electron Devices, 2009, 56(9):1935 doi: 10.1109/TED.2009.2026523
[6]
Liu R W, Kong Y M, Jiao B B, et al. A substrate-free optical readout focal plane array with a heat sink structure. Journal of Semiconductors, 2011, 34(2):024005 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=12071702&journal_id=bdtxbcn
[7]
Li C B, Jiao B B, Shi S L, et al. A MEMS based focus plane array for infrared imaging. Chinese Journal of Semiconductors, 2006, 27(1):150 doi: 10.1007/s11460-007-0015-x
[8]
Wang J Q, Tang Z A, Li J F, et al. A micropirani pressure sensor based on the tungsten microhotplate in a standard CMOS process. IEEE Trans Ind Electron, 2009, 56(4):1086 doi: 10.1109/TIE.2009.2012421
[9]
Chi-Anh N, Shin H J, Kim K T, et al. Characterization of uncooled bolometer with vanadium tungsten oxide infrared active layer. Sensors and Actuators A, 2005, 123/124:87 doi: 10.1016/j.sna.2005.04.024
[10]
Anh N C, Shin H J, Kim K, et al. Characterization of uncooled bolometer with vanadium tungsten oxide infrared active layer. Sensor Actuat A:Phys, 2005, 123/124:87 doi: 10.1016/j.sna.2005.04.024
[11]
Calaza C, Viarani N, Pedretti G, et al. An uncooled infrared focal plane array for low-cost applications fabricated with standard CMOS technology. Sensor Actuat A:Phys, 2006, 132:129 doi: 10.1016/j.sna.2006.04.027
[12]
Saxena R S, Bhan R K, Rana P S, et al. Study of performance degradation in titanium microbolometer IR detectors due to elevated heating. Infrared Phys Tech, 2011, 54:343 doi: 10.1016/j.infrared.2011.03.001
[13]
Hirota M, Nakajima Y, Saito M, et al. 120×90 element thermoelectric infrared focal plane array with precisely patterned Au-black absorber. Sens Actuators A, Phys, 2007, 135(1):146 doi: 10.1016/j.sna.2006.06.058
[14]
Murphy D, Ray M, Kennedy A, et al. High sensitive 640×512(20 mm pitch) microbolometer FPAs. P Soc Photo:Opt Ins, 2006, 6206:62061A http://adsabs.harvard.edu/abs/2007SPIE.6542E..70M
[15]
Wang H C, Yi X J, Huang G, et al. IR microbolometer with self-supporting structure operating at room temperature. Infrared Phys Tech, 2004, 45:53 doi: 10.1016/S1350-4495(03)00178-6
[16]
Ju Y F, Wu Z M, Li S B, et al. Heat sensitive property of sputtered titanium oxide thin films for uncooled IR detector application. J Mater Sci, 2012, 23:1188 doi: 10.1007/s10854-011-0570-z
[17]
Rør A, Lapadatu A, Elfving A, et al. Low cost, high performance far infrared microbolometer. Proc SPIE, 2010, 7726:77260Z-1 doi: 10.1117/12.855784
Fig. 1.  Schematic representation of microbolometer.

Fig. 2.  Schematic process flow for the fabrication of the infrared absorbing structure. (a) Etch-window opening and etching. (b) Photoresist layer spreading. (c) Metal 2 (the sacrificial layer) etching. (d) Photoresist layer removing.

Fig. 3.  SEM photograph of the microbolometer based on the new infrared absorbing structure.

Fig. 4.  Microbolometer resistance versus temperature.

Fig. 5.  Inverse of resistance versus square of bias current.

Fig. 6.  Responsivity of the microbolometer with respect to infrared modulation frequency.

Table 1.   Thickness and minimum width of each layer in the 0.5 μm CMOS process.

Table 2.   Comparison of aluminum microbolometer with other infrared detectors.

[1]
Wood R A. Uncooled thermal imaging with monolithic silicon focal planes. P Soc Photo:Opt Ins 2020, 1993:322 http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.160553
[2]
Eminoglu S, Tanrikulu M Y, Akin T. A low-cost 128×128 uncooled infrared detector array in CMOS process. J Microelectromech S, 2008, 17(1):20 doi: 10.1109/JMEMS.2007.910235
[3]
Liu C C, Mastrangelo C H. A CMOS uncooled heatbalancing infrared imager. IEEE J Solid-State Circuits, 2000, 35(4):527 doi: 10.1109/4.839912
[4]
Zhang F X, Zhu Y F, Yang J L, et al. Sensitive detection of infrared photons using a high-Q microcantilever. Journal of Semiconductors, 2011, 32(9):094010 doi: 10.1088/1674-4926/32/9/094010
[5]
Gitelman L, Stolyarova S, Bar-Lev S, et al. CMOS-SOIMEMS transistor for uncooled IR imaging. IEEE Trans Electron Devices, 2009, 56(9):1935 doi: 10.1109/TED.2009.2026523
[6]
Liu R W, Kong Y M, Jiao B B, et al. A substrate-free optical readout focal plane array with a heat sink structure. Journal of Semiconductors, 2011, 34(2):024005 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=12071702&journal_id=bdtxbcn
[7]
Li C B, Jiao B B, Shi S L, et al. A MEMS based focus plane array for infrared imaging. Chinese Journal of Semiconductors, 2006, 27(1):150 doi: 10.1007/s11460-007-0015-x
[8]
Wang J Q, Tang Z A, Li J F, et al. A micropirani pressure sensor based on the tungsten microhotplate in a standard CMOS process. IEEE Trans Ind Electron, 2009, 56(4):1086 doi: 10.1109/TIE.2009.2012421
[9]
Chi-Anh N, Shin H J, Kim K T, et al. Characterization of uncooled bolometer with vanadium tungsten oxide infrared active layer. Sensors and Actuators A, 2005, 123/124:87 doi: 10.1016/j.sna.2005.04.024
[10]
Anh N C, Shin H J, Kim K, et al. Characterization of uncooled bolometer with vanadium tungsten oxide infrared active layer. Sensor Actuat A:Phys, 2005, 123/124:87 doi: 10.1016/j.sna.2005.04.024
[11]
Calaza C, Viarani N, Pedretti G, et al. An uncooled infrared focal plane array for low-cost applications fabricated with standard CMOS technology. Sensor Actuat A:Phys, 2006, 132:129 doi: 10.1016/j.sna.2006.04.027
[12]
Saxena R S, Bhan R K, Rana P S, et al. Study of performance degradation in titanium microbolometer IR detectors due to elevated heating. Infrared Phys Tech, 2011, 54:343 doi: 10.1016/j.infrared.2011.03.001
[13]
Hirota M, Nakajima Y, Saito M, et al. 120×90 element thermoelectric infrared focal plane array with precisely patterned Au-black absorber. Sens Actuators A, Phys, 2007, 135(1):146 doi: 10.1016/j.sna.2006.06.058
[14]
Murphy D, Ray M, Kennedy A, et al. High sensitive 640×512(20 mm pitch) microbolometer FPAs. P Soc Photo:Opt Ins, 2006, 6206:62061A http://adsabs.harvard.edu/abs/2007SPIE.6542E..70M
[15]
Wang H C, Yi X J, Huang G, et al. IR microbolometer with self-supporting structure operating at room temperature. Infrared Phys Tech, 2004, 45:53 doi: 10.1016/S1350-4495(03)00178-6
[16]
Ju Y F, Wu Z M, Li S B, et al. Heat sensitive property of sputtered titanium oxide thin films for uncooled IR detector application. J Mater Sci, 2012, 23:1188 doi: 10.1007/s10854-011-0570-z
[17]
Rør A, Lapadatu A, Elfving A, et al. Low cost, high performance far infrared microbolometer. Proc SPIE, 2010, 7726:77260Z-1 doi: 10.1117/12.855784
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2087 Times PDF downloads: 15 Times Cited by: 0 Times

    History

    Received: 16 June 2013 Revised: 03 September 2013 Online: Published: 01 March 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Ning Shen, Zhen'an Tang, Jun Yu, Zhengxing Huang. A low-cost infrared absorbing structure for an uncooled infrared detector in a standard CMOS process[J]. Journal of Semiconductors, 2014, 35(3): 034014. doi: 10.1088/1674-4926/35/3/034014 N Shen, Z Tang, J Yu, Z X Huang. A low-cost infrared absorbing structure for an uncooled infrared detector in a standard CMOS process[J]. J. Semicond., 2014, 35(3): 034014. doi: 10.1088/1674-4926/35/3/034014.Export: BibTex EndNote
      Citation:
      Ning Shen, Zhen'an Tang, Jun Yu, Zhengxing Huang. A low-cost infrared absorbing structure for an uncooled infrared detector in a standard CMOS process[J]. Journal of Semiconductors, 2014, 35(3): 034014. doi: 10.1088/1674-4926/35/3/034014

      N Shen, Z Tang, J Yu, Z X Huang. A low-cost infrared absorbing structure for an uncooled infrared detector in a standard CMOS process[J]. J. Semicond., 2014, 35(3): 034014. doi: 10.1088/1674-4926/35/3/034014.
      Export: BibTex EndNote

      A low-cost infrared absorbing structure for an uncooled infrared detector in a standard CMOS process

      doi: 10.1088/1674-4926/35/3/034014
      Funds:

      the National Natural Science Foundation of China 60806038

      the National Natural Science Foundation of China 61131004

      Project supported by the National Natural Science Foundation of China (Nos. 60806038, 61131004, 61274076) and the National High Technology Research and Development Program of China (Nos. 2006AA040102, 2006AA040106)

      the National Natural Science Foundation of China 61274076

      the National High Technology Research and Development Program of China 2006AA040106

      the National High Technology Research and Development Program of China 2006AA040102

      More Information
      • Corresponding author: Tang Zhen'an, Email: tangza@dlut.edu.cn
      • Received Date: 2013-06-16
      • Revised Date: 2013-09-03
      • Published Date: 2014-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return