SEMICONDUCTOR INTEGRATED CIRCUITS

A 14-bit 500-MS/s DAC with digital background calibration

Zhen Xu1, Xueqing Li2, Jia'nan Liu2, Qi Wei2, , Li Luo1 and Huazhong Yang2

+ Author Affiliations

 Corresponding author: Wei Qi, Email: weiqi@tsinghua.edu.cn

PDF

Abstract: The linearity of current-steering digital-to-analog converters (DACs) at low signal frequencies is mainly limited by matching properties of current sources, so large-size current source arrays are widely used for better matching. This, however, results in large gradient errors and parasitic capacitance, which degrade the spurious free dynamic range (SFDR) for high-frequency signals. To overcome this problem, calibration is an effective method. In this paper, a digital background calibration technique for current-steering DACs is presented and verified by a 14-bit DAC in a 0.13 μm standard CMOS process. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) are 0.4 LSB and 1.2 LSB, respectively. At 500-MS/s, the SFDR is 70 dB and 50.3 dB for signals of 5.4 MHz and 224 MHz, respectively. The core area is 0.69 mm2 and the power consumption is 165 mW from a mixed power supply with 1.2 V and 3.3 V.

Key words: digital to analog converter (DAC)current-steeringdigital background calibration



[1]
Huang Q, Francese P A, Martelli C, et al. A 200 MS/s 14 b 97 mW DAC in 0.18μm CMOS. IEEE ISSCC Dig Tech Papers, 2004:364 http://www.jos.ac.cn/bdtxben/ch/reader/create_pdf.aspx?file_no=13082701
[2]
Pelgrom M, Duinmaijer A, Welbers A. Matching properties of MOS transistors. IEEE J Solid-State Circuits, 1989, 24(5):1433 doi: 10.1109/JSSC.1989.572629
[3]
Tseng W H, Fan C W, Wu J T. A 12-bit 1.25-GS/s DAC in 90 nm CMOS with > 70 dB SFDR up to 500 MHz. IEEE J Solid-State Circuits, 2011, 46(12):2845 doi: 10.1109/JSSC.2011.2164302
[4]
Vander Plas G A M, Vandenbussche J, Sansen W, et al. A 14-bit intrinsic accuracy Q2 random walk CMOS DAC. IEEE J Solid-State Circuits, 1999, 34(12):1708 doi: 10.1109/4.808896
[5]
Bugeja A, Song B S. A self-trimming 14-b 100-MS/s CMOS DAC. IEEE J Solid-State Circuits, 2000, 35(12):1841 doi: 10.1109/4.890297
[6]
Chan K L, Zhu J, Galton I. Dynamic element matching to prevent nonlinear distortion from pulse-shape mismatches in high-resolution DACs. IEEE J Solid-State Circuits, 2008, 43(9):2607 https://core.ac.uk/display/21704311
[7]
Doris K, Lin C, Domine L, et al. D/A conversion:amplitude and time error mapping optimization. Proc IEEE ICECS, 2001:863 http://ieeexplore.ieee.org/document/957610/keywords
[8]
Yusuke I, Akira M. Digital calibration method for binary-weighted current-steering D/A-converters without calibration ADC. IEICE Trans, 2007, 90(6):1172 http://dialnet.unirioja.es/servlet/articulo?codigo=3510485
[9]
Radulov G I, Quinn P J, Hegt H, et al. An on-chip self-calibration method for current mismatch in D/A converters. Proc IEEE ESSCIRC, 2005:169 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=1541586&punumber%3D10265
[10]
Chi J H, Chu S H, Tsai T H. A 1.8-V 12-bit 250-MS/s 25-mW self-calibrated DAC. Proc IEEE ESSCIRC, 2010:222 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=5619889&contentType=Conference+Publications
[11]
Radulov G. Flexible and self-calibrating current-steering digital-to-analog converters:analysis, classification and design. PhD Thesis, Eindhoven University of Technology, 2010 doi: 10.6100/IR656902
[12]
Qiu D, Fang S, Xie R, et al. A 14-bit 100 MS/s self-calibrated DAC with a randomized calibration-period. IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2010:312 http://ieeexplore.ieee.org/document/5667743/
[13]
Chen T, Gielen G G E. The analysis and improvement of a current-steering DACs dynamic SFDR-I:the cell-dependent delay differences. IEEE Trans Circuits Syst Ⅰ, 2006, 53(1):3 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01576881
[14]
Schafferer B, Adams R. A 3 V CMOS 400 mW 14 b 1.4 GS/s DAC for multi-carrier applications. IEEE ISSCC Dig Tech Papers, 2004:360 doi: 10.1007/978-1-4614-1250-2_2/fulltext.html
[15]
Van den Bosch A, Steyaert M, Sansen W. An accurate statistical yield model for CMOS current-steering D/A converters. IEEE Int Symp Circuits and Systems (ISCAS), 2000:Ⅳ.105 doi: 10.1023/A:1011261330190
[16]
Chen T, Gielen G. The analysis and improvement of a current-steering DAC's dynamic SFDR——Ⅱ:the output-dependent delay differences. IEEE Trans Circuits Syst Ⅰ, 2007, 54(2):268 doi: 10.1109/TCSI.2006.887598
[17]
Fan H, Han X, Wei Q, et al. A 12-bit self-calibrating SAR ADC achieving a Nyquist 90.4-dB SFDR. Analog Integrated Circuits and Signal Processing, 2013, 74(1):239 doi: 10.1007/s10470-012-9977-6
[18]
Traff H. Novel approach to high speed CMOS current comparators. Electron Lett, 1992, 28(3):310 doi: 10.1049/el:19920192
[19]
Chen T, Georges G E. A 14-bit 200-MHz current-steering DAC with switching-sequence post-adjustment calibration. IEEE J Solid-State Circuits, 2007, 42(11):2386 doi: 10.1109/JSSC.2007.906200
[20]
Cheng L, Chen C X, Ye F, et al. A digitally calibrated current-steering DAC with current-splitting array. IEEE International Midwest Symposium on Circuits and Systems, 2012:278 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6292011
[21]
Ali A M A, Dillon C, Sneed R, et al. A 14-bit 125 MS/s IF/RF sampling pipelined ADC with 100 dB SFDR and 50 fs jitter. IEEE J Solid-State Circuits, 2006, 41(8):1846 doi: 10.1109/JSSC.2006.875291
Fig. 1.  The architecture of the proposed 14-bit DAC.

Fig. 2.  Simplified calibration diagram.

Fig. 3.  Schematic of the voltage comparator[14].

Fig. 4.  Schematic of the CALDAC.

Fig. 5.  FSM chart of the calibration algorithm.

Fig. 6.  Micrograph of the 14-bit DAC.

Fig. 7.  Static performance after calibration. (a) DNL. (b) INL.

Fig. 8.  Dynamic measurement setup diagram.

Fig. 9.  The measured SFDR at 500-MS/s (a) 5.4 MHz and (b) 224 MHz input signal frequencies.

Fig. 10.  Measured SFDR versus input signal frequency at 500 MS/s.

Table 1.   Summary of experimental perfomance in comparision with other calibrated CMOS DACs.

[1]
Huang Q, Francese P A, Martelli C, et al. A 200 MS/s 14 b 97 mW DAC in 0.18μm CMOS. IEEE ISSCC Dig Tech Papers, 2004:364 http://www.jos.ac.cn/bdtxben/ch/reader/create_pdf.aspx?file_no=13082701
[2]
Pelgrom M, Duinmaijer A, Welbers A. Matching properties of MOS transistors. IEEE J Solid-State Circuits, 1989, 24(5):1433 doi: 10.1109/JSSC.1989.572629
[3]
Tseng W H, Fan C W, Wu J T. A 12-bit 1.25-GS/s DAC in 90 nm CMOS with > 70 dB SFDR up to 500 MHz. IEEE J Solid-State Circuits, 2011, 46(12):2845 doi: 10.1109/JSSC.2011.2164302
[4]
Vander Plas G A M, Vandenbussche J, Sansen W, et al. A 14-bit intrinsic accuracy Q2 random walk CMOS DAC. IEEE J Solid-State Circuits, 1999, 34(12):1708 doi: 10.1109/4.808896
[5]
Bugeja A, Song B S. A self-trimming 14-b 100-MS/s CMOS DAC. IEEE J Solid-State Circuits, 2000, 35(12):1841 doi: 10.1109/4.890297
[6]
Chan K L, Zhu J, Galton I. Dynamic element matching to prevent nonlinear distortion from pulse-shape mismatches in high-resolution DACs. IEEE J Solid-State Circuits, 2008, 43(9):2607 https://core.ac.uk/display/21704311
[7]
Doris K, Lin C, Domine L, et al. D/A conversion:amplitude and time error mapping optimization. Proc IEEE ICECS, 2001:863 http://ieeexplore.ieee.org/document/957610/keywords
[8]
Yusuke I, Akira M. Digital calibration method for binary-weighted current-steering D/A-converters without calibration ADC. IEICE Trans, 2007, 90(6):1172 http://dialnet.unirioja.es/servlet/articulo?codigo=3510485
[9]
Radulov G I, Quinn P J, Hegt H, et al. An on-chip self-calibration method for current mismatch in D/A converters. Proc IEEE ESSCIRC, 2005:169 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=1541586&punumber%3D10265
[10]
Chi J H, Chu S H, Tsai T H. A 1.8-V 12-bit 250-MS/s 25-mW self-calibrated DAC. Proc IEEE ESSCIRC, 2010:222 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=5619889&contentType=Conference+Publications
[11]
Radulov G. Flexible and self-calibrating current-steering digital-to-analog converters:analysis, classification and design. PhD Thesis, Eindhoven University of Technology, 2010 doi: 10.6100/IR656902
[12]
Qiu D, Fang S, Xie R, et al. A 14-bit 100 MS/s self-calibrated DAC with a randomized calibration-period. IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2010:312 http://ieeexplore.ieee.org/document/5667743/
[13]
Chen T, Gielen G G E. The analysis and improvement of a current-steering DACs dynamic SFDR-I:the cell-dependent delay differences. IEEE Trans Circuits Syst Ⅰ, 2006, 53(1):3 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01576881
[14]
Schafferer B, Adams R. A 3 V CMOS 400 mW 14 b 1.4 GS/s DAC for multi-carrier applications. IEEE ISSCC Dig Tech Papers, 2004:360 doi: 10.1007/978-1-4614-1250-2_2/fulltext.html
[15]
Van den Bosch A, Steyaert M, Sansen W. An accurate statistical yield model for CMOS current-steering D/A converters. IEEE Int Symp Circuits and Systems (ISCAS), 2000:Ⅳ.105 doi: 10.1023/A:1011261330190
[16]
Chen T, Gielen G. The analysis and improvement of a current-steering DAC's dynamic SFDR——Ⅱ:the output-dependent delay differences. IEEE Trans Circuits Syst Ⅰ, 2007, 54(2):268 doi: 10.1109/TCSI.2006.887598
[17]
Fan H, Han X, Wei Q, et al. A 12-bit self-calibrating SAR ADC achieving a Nyquist 90.4-dB SFDR. Analog Integrated Circuits and Signal Processing, 2013, 74(1):239 doi: 10.1007/s10470-012-9977-6
[18]
Traff H. Novel approach to high speed CMOS current comparators. Electron Lett, 1992, 28(3):310 doi: 10.1049/el:19920192
[19]
Chen T, Georges G E. A 14-bit 200-MHz current-steering DAC with switching-sequence post-adjustment calibration. IEEE J Solid-State Circuits, 2007, 42(11):2386 doi: 10.1109/JSSC.2007.906200
[20]
Cheng L, Chen C X, Ye F, et al. A digitally calibrated current-steering DAC with current-splitting array. IEEE International Midwest Symposium on Circuits and Systems, 2012:278 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6292011
[21]
Ali A M A, Dillon C, Sneed R, et al. A 14-bit 125 MS/s IF/RF sampling pipelined ADC with 100 dB SFDR and 50 fs jitter. IEEE J Solid-State Circuits, 2006, 41(8):1846 doi: 10.1109/JSSC.2006.875291
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2467 Times PDF downloads: 31 Times Cited by: 0 Times

    History

    Received: 27 August 2013 Revised: Online: Published: 01 March 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zhen Xu, Xueqing Li, Jia'nan Liu, Qi Wei, Li Luo, Huazhong Yang. A 14-bit 500-MS/s DAC with digital background calibration[J]. Journal of Semiconductors, 2014, 35(3): 035008. doi: 10.1088/1674-4926/35/3/035008 Z Xu, X Q Li, J Liu, Q Wei, L Luo, H Z Yang. A 14-bit 500-MS/s DAC with digital background calibration[J]. J. Semicond., 2014, 35(3): 035008. doi: 10.1088/1674-4926/35/3/035008.Export: BibTex EndNote
      Citation:
      Zhen Xu, Xueqing Li, Jia'nan Liu, Qi Wei, Li Luo, Huazhong Yang. A 14-bit 500-MS/s DAC with digital background calibration[J]. Journal of Semiconductors, 2014, 35(3): 035008. doi: 10.1088/1674-4926/35/3/035008

      Z Xu, X Q Li, J Liu, Q Wei, L Luo, H Z Yang. A 14-bit 500-MS/s DAC with digital background calibration[J]. J. Semicond., 2014, 35(3): 035008. doi: 10.1088/1674-4926/35/3/035008.
      Export: BibTex EndNote

      A 14-bit 500-MS/s DAC with digital background calibration

      doi: 10.1088/1674-4926/35/3/035008
      Funds:

      Project supported by the National Natural Science Foundation of China (Nos. 60976024, 61306029) and the National High Technology Research and Development Program of China (No. 2013AA014103)

      the National Natural Science Foundation of China 60976024

      the National High Technology Research and Development Program of China 2013AA014103

      the National Natural Science Foundation of China 61306029

      More Information
      • Corresponding author: Wei Qi, Email: weiqi@tsinghua.edu.cn
      • Received Date: 2013-08-27
      • Published Date: 2014-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return