SEMICONDUCTOR TECHNOLOGY

Effect of guanidine hydrochloride on removal rate selectivity and wafer topography modification in barrier CMP

Hailong Li1, , Jin Kang2, Yuling Liu1, Chenwei Wang1, Hong Liu3 and Jiaojiao Gao1

+ Author Affiliations

 Corresponding author: Li Hailong, Email:li314977452@163.com

PDF

Abstract: We propose an alkaline barrier slurry containing guanidine hydrochloride (GH) and hydrogen peroxide. The slurry does not contain any corrosion inhibitors, such as benzotriazole (BTA). 3-inch samples of tantalum copper and oxide were polished to observe the removal rate. The effect of GH on removal rate selectivity along with hydrogen peroxide was investigated by comparing slurry containing GH and H2O2 with slurry containing only GH. Details about the tantalum polishing mechanism in an alkaline guanidine-based slurry and the electrochemical reactions are discussed. The results show that guanidine hydrochloride can increase the tantalum polishing rate and the selectivity of copper and barrier materials. The variation of the dishing and wire line resistance with the polishing time was measured. The dishing value after a 300 mm pattern wafer polishing suggests that the slurry has an effective performance in topography modification. The result obtained from the copper wire line resistance test reveals that the wire line in the trench has a low copper loss.

Key words: Guanidine hydrochlorideselectivitydishingbarrier layerCMP



[1]
Li Y, Zhao J Z, Wu P, et al. Interaction between abrasive particles and films during chemical-mechanical polishing of copper and tantalum. Thin Solid Films, 2006, 497:321 doi: 10.1016/j.tsf.2005.09.189
[2]
Hernandez J, Wrschka P, Oehrlein G S. Surface chemistry studies of copper chemical mechanical planarization. J Electrochem Soc, 2001, 148:G389 doi: 10.1149/1.1377595
[3]
Kuo H H, Song J Y, Lin K C, et al. Novel CMP barrier slurry for integrated porous low-k technology of 45 nm node. International Interconnect Technology Conference, 2006:137 http://www.sciencedirect.com/science/article/pii/S0167931706005090
[4]
Zhao F, Economikos L, Tseng W T, et al. Evaluation of Cu CMP barrier slurries for ultra low-k dielectric film (k~2.4). International Conference on Planarization Technology, Dresden, Germany, 2007 https://www.vde-verlag.de/proceedings-en/563065024.html
[5]
Vijayakumar A, Du T, Sundaram K B, et al. Polishing mechanism of tantalum films by SiO2 particles. Microelectron Eng, 2003, 70:93 doi: 10.1016/S0167-9317(03)00398-8
[6]
Sulyma C M, Roy D. Electrochemical characterization of surface complexes formed on Cu and Ta in succinic acid based solutions used for chemical mechanical planarization. Appl Surf Sci, 2010, 256:2583 doi: 10.1016/j.apsusc.2009.10.108
[7]
Chen J C, Tsai W T. Chemical-mechanical polishing behavior of tantalum in slurries. Surface & Coatings Technology, 2004, 185:50 http://www.sciencedirect.com/science/article/pii/S025789720400012X
[8]
Wang C W, Gao J J, Tian J Y, et al. Chemical mechanical planarization of barrier layers by using a weakly alkaline slurry. Mcroelectron Eng, 2013, 108:71 doi: 10.1016/j.mee.2013.04.001
[9]
Luo Q, Cambell D R, Babu S V. Chemical-mechanical polishing of copper in alkaline media. Thin Solid Films, 1997, 311:177 doi: 10.1016/S0040-6090(97)00454-9
[10]
Nagendra P Y, Ramanathan S. Chemical mechanical planarization of copper in alkaline slurry with uric acid as inhibitor. Electrochimica Acta, 2007, 52:6353 doi: 10.1016/j.electacta.2007.04.044
[11]
Rock S E, Crain D J, Zheng J P, et al. Electrochemical investigation of the surface-modifying roles of guanidine carbonate in chemical mechanical planarization of tantalum. Mater Chem Phys, 2011, 129:1159 doi: 10.1016/j.matchemphys.2011.05.079
[12]
Rock S E, Crain D J, Pettit C M. Surface-complex films of guanidine on tantalum nitride electrochemically characterized for application in chemical mechanical planarization. Thin Solid Films, 2012, 520:2892 doi: 10.1016/j.tsf.2011.12.005
[13]
Zhang J, Li S, Carter P W. Chemical mechanical polishing of tantalum aqueous interfacial reactivity of tantalum and tantalum oxide. J Electrochem Soc, 2007, 154:H109 doi: 10.1149/1.2404899
[14]
Bailey P J, Pace S. The coordination chemistry of guanidines and guanidinates. Coordination Chemistry Reviews, 2001, 214:91 doi: 10.1016/S0010-8545(00)00389-1
[15]
Wang C W, Liu Y L, Niu X H, et al. An advanced alkaline slurry for barrier chemical mechanical polanarization on pattern wafers. Journal of Semiconductors, 2012, 33(4):046001 doi: 10.1088/1674-4926/33/4/046001
Fig. 1.  Cross-section view of pattern wafer.

Fig. 2.  Selectivity of slurries containing H$_{2}$O$_{2}$ and GH.

Fig. 3.  Tafel plot of Ta measured in ($a$) a solution without GH and ($b$) a solution containing 0.4 wt% GH.

Fig. 4.  Tafel plot for Ta recorded in (a) a solution with 0.2 vol% H$_{2}$O$_{2}$ and (b) a solution containing 0.2 vol% H$_{2}$O$_{2}$ and 2.5 vol% FA/O.

Fig. 5.  Selectivity of slurries containing GH without H$_{2}$O$_{2}$.

Fig. 6.  Testing units on pattern wafer.

Fig. 7.  Optical microscope images. (a) Dishing pad. (b) Resistance testing pads.

Fig. 8.  (a) XP-Plus 300 profile. (b) B1500A semiconductor analyzer profile.

Fig. 9.  Mean value of dishing as a function of polishing time.

Fig. 10.  3D view for wafer surface (100 $\times $ 100 $\mu $m$^{2})$ (a) before and (b) after polishing.

Fig. 11.  Box chart of mean resistance as a function of polishing time.

Table 1.   3-inch sample polishing recipe.

[1]
Li Y, Zhao J Z, Wu P, et al. Interaction between abrasive particles and films during chemical-mechanical polishing of copper and tantalum. Thin Solid Films, 2006, 497:321 doi: 10.1016/j.tsf.2005.09.189
[2]
Hernandez J, Wrschka P, Oehrlein G S. Surface chemistry studies of copper chemical mechanical planarization. J Electrochem Soc, 2001, 148:G389 doi: 10.1149/1.1377595
[3]
Kuo H H, Song J Y, Lin K C, et al. Novel CMP barrier slurry for integrated porous low-k technology of 45 nm node. International Interconnect Technology Conference, 2006:137 http://www.sciencedirect.com/science/article/pii/S0167931706005090
[4]
Zhao F, Economikos L, Tseng W T, et al. Evaluation of Cu CMP barrier slurries for ultra low-k dielectric film (k~2.4). International Conference on Planarization Technology, Dresden, Germany, 2007 https://www.vde-verlag.de/proceedings-en/563065024.html
[5]
Vijayakumar A, Du T, Sundaram K B, et al. Polishing mechanism of tantalum films by SiO2 particles. Microelectron Eng, 2003, 70:93 doi: 10.1016/S0167-9317(03)00398-8
[6]
Sulyma C M, Roy D. Electrochemical characterization of surface complexes formed on Cu and Ta in succinic acid based solutions used for chemical mechanical planarization. Appl Surf Sci, 2010, 256:2583 doi: 10.1016/j.apsusc.2009.10.108
[7]
Chen J C, Tsai W T. Chemical-mechanical polishing behavior of tantalum in slurries. Surface & Coatings Technology, 2004, 185:50 http://www.sciencedirect.com/science/article/pii/S025789720400012X
[8]
Wang C W, Gao J J, Tian J Y, et al. Chemical mechanical planarization of barrier layers by using a weakly alkaline slurry. Mcroelectron Eng, 2013, 108:71 doi: 10.1016/j.mee.2013.04.001
[9]
Luo Q, Cambell D R, Babu S V. Chemical-mechanical polishing of copper in alkaline media. Thin Solid Films, 1997, 311:177 doi: 10.1016/S0040-6090(97)00454-9
[10]
Nagendra P Y, Ramanathan S. Chemical mechanical planarization of copper in alkaline slurry with uric acid as inhibitor. Electrochimica Acta, 2007, 52:6353 doi: 10.1016/j.electacta.2007.04.044
[11]
Rock S E, Crain D J, Zheng J P, et al. Electrochemical investigation of the surface-modifying roles of guanidine carbonate in chemical mechanical planarization of tantalum. Mater Chem Phys, 2011, 129:1159 doi: 10.1016/j.matchemphys.2011.05.079
[12]
Rock S E, Crain D J, Pettit C M. Surface-complex films of guanidine on tantalum nitride electrochemically characterized for application in chemical mechanical planarization. Thin Solid Films, 2012, 520:2892 doi: 10.1016/j.tsf.2011.12.005
[13]
Zhang J, Li S, Carter P W. Chemical mechanical polishing of tantalum aqueous interfacial reactivity of tantalum and tantalum oxide. J Electrochem Soc, 2007, 154:H109 doi: 10.1149/1.2404899
[14]
Bailey P J, Pace S. The coordination chemistry of guanidines and guanidinates. Coordination Chemistry Reviews, 2001, 214:91 doi: 10.1016/S0010-8545(00)00389-1
[15]
Wang C W, Liu Y L, Niu X H, et al. An advanced alkaline slurry for barrier chemical mechanical polanarization on pattern wafers. Journal of Semiconductors, 2012, 33(4):046001 doi: 10.1088/1674-4926/33/4/046001
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2933 Times PDF downloads: 14 Times Cited by: 0 Times

    History

    Received: 12 August 2013 Revised: 17 October 2013 Online: Published: 01 March 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hailong Li, Jin Kang, Yuling Liu, Chenwei Wang, Hong Liu, Jiaojiao Gao. Effect of guanidine hydrochloride on removal rate selectivity and wafer topography modification in barrier CMP[J]. Journal of Semiconductors, 2014, 35(3): 036002. doi: 10.1088/1674-4926/35/3/036002 H L Li, J Kang, Y L Liu, C W Wang, H Liu, J J Gao. Effect of guanidine hydrochloride on removal rate selectivity and wafer topography modification in barrier CMP[J]. J. Semicond., 2014, 35(3): 036002. doi: 10.1088/1674-4926/35/3/036002.Export: BibTex EndNote
      Citation:
      Hailong Li, Jin Kang, Yuling Liu, Chenwei Wang, Hong Liu, Jiaojiao Gao. Effect of guanidine hydrochloride on removal rate selectivity and wafer topography modification in barrier CMP[J]. Journal of Semiconductors, 2014, 35(3): 036002. doi: 10.1088/1674-4926/35/3/036002

      H L Li, J Kang, Y L Liu, C W Wang, H Liu, J J Gao. Effect of guanidine hydrochloride on removal rate selectivity and wafer topography modification in barrier CMP[J]. J. Semicond., 2014, 35(3): 036002. doi: 10.1088/1674-4926/35/3/036002.
      Export: BibTex EndNote

      Effect of guanidine hydrochloride on removal rate selectivity and wafer topography modification in barrier CMP

      doi: 10.1088/1674-4926/35/3/036002
      Funds:

      the Fund Project of Hebei Provincial Department of Education, China 2011128

      the Major National Science and Technology Special Projects 2009ZX02308

      the Tianjin Natural Science Foundation of China 10JCZDJC15500

      Project supported by the Major National Science and Technology Special Projects (No. 2009ZX02308), the Tianjin Natural Science Foundation of China (No. 10JCZDJC15500), and the Fund Project of Hebei Provincial Department of Education, China (No. 2011128)

      More Information
      • Corresponding author: Li Hailong, Email:li314977452@163.com
      • Received Date: 2013-08-12
      • Revised Date: 2013-10-17
      • Published Date: 2014-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return