SEMICONDUCTOR PHYSICS

Influence of atomic layer deposition Al2O3 nano-layer on the surface passivation of silicon solar cells

Decheng Yang, Fang Lang, Zhuo Xu, Jinchao Shi, Gaofei Li, Zhiyan Hu and Jingfeng Xiong

+ Author Affiliations

 Corresponding author: Yang Decheng, Email:yangdecheng@mail.nankai.edu.cn

PDF

Abstract: A stack of Al2O3/SiNx dual layer was applied for the back side surface passivation of p-type multi-crystalline silicon solar cells, with laser-opened line metal contacts, forming a local aluminum back surface field (local Al-BSF) structure. A slight amount of Al2O3, wrapping around to the front side of the wafer during the thermal atomic layer deposition process, was found to have a negative influence on cell performance. The different process flow was found to lead to a different cell performance, because of the Al2O3 wrapping around the front surface. The best cell performance, with an absolute efficiency gain of about 0.6% compared with the normal full Al-BSF structure solar cell, was achieved when the Al2O3 layer was deposited after the front surface of the wafer had been covered by a SiNx layer. We discuss the possible reasons for this phenomenon, and propose three explanations as the Ag paste, being hindered from firing through the front passivation layer, degraded the SiNx passivation effect and the Al2O3 induced an inversion effect on the front surface. Characterization methods like internal quantum efficiency and contact resistance scanning were used to assist our understanding of the underlying mechanisms.

Key words: multi-crystalline silicon solar cellslocal Al-BSFAl2O3passivationatomic layer deposition



[1]
Gatz S, Hannebauer H, Hesse R, et al. 19.4%-efficient large-area fully screen-printed silicon solar cells. Phys Status Solidi, 2011, 5(4):147
[2]
Liu B, Qiu S, Chen N, et al. Double-layered silicon nitride antireflection coatings for multicrystalline silicon solar cells. Mater Sci Semicond Processing, 2013, 16(3):1014 doi: 10.1016/j.mssp.2013.02.019
[3]
Jäger U, Suwito D, Benick J, et al. A laser based process for the formation of a local back surface field for n-type silicon solar cells. Thin Solid Films, 2011, 519(11):3827 doi: 10.1016/j.tsf.2011.01.237
[4]
Chen J, Du Z, Hoex B, et al. Investigation of evaporated rear contacts for Al-LBSF silicon wafer solar cells. Energy Procedia, 2012, 25:10 doi: 10.1016/j.egypro.2012.07.002
[5]
Vermang B, Goverde H, Uruena A, et al. Blistering in ALD Al2O3 passivation layers as rear contacting for local Al BSF Si solar cells. Solar Energy Materials & Solar Cells, 2012, 101:204
[6]
Martin I, Vetter M, Orpella A, et al. Surface passivation of p-type crystalline Si by plasma enhanced chemical vapor deposited amorphous SiCx:H films. Appl Phys Lett, 2001, 79:2199 doi: 10.1063/1.1404406
[7]
Cousins P J, Cotter J E. Minimizing lifetime degradation associated with thermal oxidation of upright randomly textured silicon surfaces. Solar Energy Materials & Solar Cells, 2006, 90(2):228
[8]
Hezel R, Schörner R. Plasma Si nitride-a promising dielectric to achieve high-quality silicon MIS/IL solar cells. J Appl Phys, 1981, 52:3076 doi: 10.1063/1.329058
[9]
Mäckel H, Lüdemann. R Detailed study of the composition of hydrogenated SiNx layers for high-quality silicon surface passivation. J Appl Phys, 2002, 92:2602 doi: 10.1063/1.1495529
[10]
Lauinger T, Schmidt J, Aberle A G, et al. Record low surface recombination velocities on 1Ω/cm p-silicon using remote plasma silicon nitride passivation. Appl Phys Lett, 1996, 68:1232 doi: 10.1063/1.115936
[11]
Kopfer J M, Keipert-Colberg S, Borchert D. Capacitance-voltage characterization of silicon oxide and silicon nitride coatings as passivation layers for crystalline silicon solar cells and investigation of their stability against x-radiation. Thin Solid Films, 2011, 519(19):6525 doi: 10.1016/j.tsf.2011.04.107
[12]
Dauwe S, Mittelstädt L, Metz A, et al. Experimental evidence of parasitic shunting in silicon nitride rear surface passivation solar cells. Progress in Photovoltaics Research and Application, 2002, 10(1):271
[13]
Mittelstädt L, Dauwe S, Metz A, et al. Front and rear silicon-nitride-passivated multicrystalline silicon solar cells with an efficiency of 18.1%. Progress in Photovoltaics Research and Application, 2002, 10(1):35 doi: 10.1002/pip.v10:1
[14]
Ortega P, Marti I, Lopez G, et al. P-type c-Si solar cells based on rear side laser processing of Al2O3/SiCx stacks. Solar Energy Materials and Solar Cells, 2012, 106:80 doi: 10.1016/j.solmat.2012.05.012
[15]
Wu Dawei, Jia Rui, Ding Wuchang, et al. Optimization of Al2O3/SiNx stacked antireflection structures for N-type surface-passivated crystalline silicon solar cells. Journal of Semiconductors, 2011, 32(9):094008 doi: 10.1088/1674-4926/32/9/094008
[16]
Itsumi M, Sato Y, Imai K, et al. Characterization of metallic impurities in Si using a recombination-lifetime correlation method. J Appl Phys, 1997, 82:3250 doi: 10.1063/1.365632
[17]
Hoex B, Schmidt J, Bock R, et al. Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3. Appl Phys Lett, 2007, 91:112107 doi: 10.1063/1.2784168
[18]
Hoex B, Heil S B S, Langereis E, et al. Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3. Appl Phys Lett, 2006, 89:042112 doi: 10.1063/1.2240736
[19]
Dingemans G, van de Sanden M C M, Kessels W M M. Excellent Si surface passivation by low temperature SiO2 using an ultrathin Al2O3 capping film. Physica Status Solidi, 2011, 5(1):22 doi: 10.1002/pssr.201004378
[20]
Hoex B, Schmidt J, Pohl P, et al. Silicon surface passivation by atomic layer deposited Al2O3. J Appl Phys, 2008, 104:044903 doi: 10.1063/1.2963707
[21]
Terlinden N M, Dingemans G, van de Sanden M C M, et al. Role of field-effect on c-Si surface passivation by ultrathin (2-20 nm) atomic layer deposited Al2O3. Appl Phys Lett, 2010, 96:112101 doi: 10.1063/1.3334729
[22]
Benick J, Hoex B, van de Sanden M C M, et al. High efficiency n-type Si solar cells on Al2O3-passivated boron emitters. Appl Phys Lett, 2008, 92:253504 doi: 10.1063/1.2945287
[23]
Dullweber T, Gatz S, Hannebauer H, et al. Towards 20% efficient large-area screen-printed rear-passivated silicon solar cells. Progress in Photovoltaics Research and Application, 2012, 20(6):630 doi: 10.1002/pip.1198
[24]
Werner F, Veith B, Zielke D, et al. Electronic and chemical properties of the c-Si/Al2O3 interface. J Appl Phys, 2011, 109:113701 doi: 10.1063/1.3587227
Fig. 1.  Schematics of mc-Si solar cell structure. (a) Full Al-BSF. (b) Local Al-BSF.

Fig. 2.  IQE and reflectivity of cells with full Al-BSF (dashed line) and cells with local Al-BSF with Al$_{2}$O$_{3}$/SiN$_{x}$ passivation layer (straight line).

Fig. 3.  IQE data of full Al-BSF solar cells without (dashed line) and with (straight line) Al$_{2}$O$_{3}$ deposited intentionally on the front side.

Fig. 4.  Front side Corescan images of full Al-BSF solar cells (a) with and (b) without Al$_{2}$O$_{3}$ deposited intentionally on the front side.

Table 1.   Mean values of the solar cell parameters measured under STC (AM1.5G, 100 mW/cm$^{2}$, 25 ). Group A: reference cells with full Al-BSF fabricated in process A; Group B: test cells with local Al-BSF fabricated in process B; Group C: test cells with local Al-BSF fabricated in process C.

Table 2.   Mean values of the solar cell parameters measured under STC (AM1.5G, 100 mW/cm$^{2}$, 25 ). Group F: Local Al-BSF cells produced through process C; Group G: Local Al-BSF cells with 10 nm Al$_{2}$O$_{3}$ both on the front and rear surface.

Table 3.   Mean values of the solar cell parameters measured under STC (AM1.5G, 100 mW/cm$^{2}$, 25 ). Group D: reference cells with full Al-BSF and without Al$_{2}$O$_{3}$ deposition; Group E: test cells with full Al-BSF and with 1 nm Al$_{2}$O$_{3}$ on the front surface.

[1]
Gatz S, Hannebauer H, Hesse R, et al. 19.4%-efficient large-area fully screen-printed silicon solar cells. Phys Status Solidi, 2011, 5(4):147
[2]
Liu B, Qiu S, Chen N, et al. Double-layered silicon nitride antireflection coatings for multicrystalline silicon solar cells. Mater Sci Semicond Processing, 2013, 16(3):1014 doi: 10.1016/j.mssp.2013.02.019
[3]
Jäger U, Suwito D, Benick J, et al. A laser based process for the formation of a local back surface field for n-type silicon solar cells. Thin Solid Films, 2011, 519(11):3827 doi: 10.1016/j.tsf.2011.01.237
[4]
Chen J, Du Z, Hoex B, et al. Investigation of evaporated rear contacts for Al-LBSF silicon wafer solar cells. Energy Procedia, 2012, 25:10 doi: 10.1016/j.egypro.2012.07.002
[5]
Vermang B, Goverde H, Uruena A, et al. Blistering in ALD Al2O3 passivation layers as rear contacting for local Al BSF Si solar cells. Solar Energy Materials & Solar Cells, 2012, 101:204
[6]
Martin I, Vetter M, Orpella A, et al. Surface passivation of p-type crystalline Si by plasma enhanced chemical vapor deposited amorphous SiCx:H films. Appl Phys Lett, 2001, 79:2199 doi: 10.1063/1.1404406
[7]
Cousins P J, Cotter J E. Minimizing lifetime degradation associated with thermal oxidation of upright randomly textured silicon surfaces. Solar Energy Materials & Solar Cells, 2006, 90(2):228
[8]
Hezel R, Schörner R. Plasma Si nitride-a promising dielectric to achieve high-quality silicon MIS/IL solar cells. J Appl Phys, 1981, 52:3076 doi: 10.1063/1.329058
[9]
Mäckel H, Lüdemann. R Detailed study of the composition of hydrogenated SiNx layers for high-quality silicon surface passivation. J Appl Phys, 2002, 92:2602 doi: 10.1063/1.1495529
[10]
Lauinger T, Schmidt J, Aberle A G, et al. Record low surface recombination velocities on 1Ω/cm p-silicon using remote plasma silicon nitride passivation. Appl Phys Lett, 1996, 68:1232 doi: 10.1063/1.115936
[11]
Kopfer J M, Keipert-Colberg S, Borchert D. Capacitance-voltage characterization of silicon oxide and silicon nitride coatings as passivation layers for crystalline silicon solar cells and investigation of their stability against x-radiation. Thin Solid Films, 2011, 519(19):6525 doi: 10.1016/j.tsf.2011.04.107
[12]
Dauwe S, Mittelstädt L, Metz A, et al. Experimental evidence of parasitic shunting in silicon nitride rear surface passivation solar cells. Progress in Photovoltaics Research and Application, 2002, 10(1):271
[13]
Mittelstädt L, Dauwe S, Metz A, et al. Front and rear silicon-nitride-passivated multicrystalline silicon solar cells with an efficiency of 18.1%. Progress in Photovoltaics Research and Application, 2002, 10(1):35 doi: 10.1002/pip.v10:1
[14]
Ortega P, Marti I, Lopez G, et al. P-type c-Si solar cells based on rear side laser processing of Al2O3/SiCx stacks. Solar Energy Materials and Solar Cells, 2012, 106:80 doi: 10.1016/j.solmat.2012.05.012
[15]
Wu Dawei, Jia Rui, Ding Wuchang, et al. Optimization of Al2O3/SiNx stacked antireflection structures for N-type surface-passivated crystalline silicon solar cells. Journal of Semiconductors, 2011, 32(9):094008 doi: 10.1088/1674-4926/32/9/094008
[16]
Itsumi M, Sato Y, Imai K, et al. Characterization of metallic impurities in Si using a recombination-lifetime correlation method. J Appl Phys, 1997, 82:3250 doi: 10.1063/1.365632
[17]
Hoex B, Schmidt J, Bock R, et al. Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3. Appl Phys Lett, 2007, 91:112107 doi: 10.1063/1.2784168
[18]
Hoex B, Heil S B S, Langereis E, et al. Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3. Appl Phys Lett, 2006, 89:042112 doi: 10.1063/1.2240736
[19]
Dingemans G, van de Sanden M C M, Kessels W M M. Excellent Si surface passivation by low temperature SiO2 using an ultrathin Al2O3 capping film. Physica Status Solidi, 2011, 5(1):22 doi: 10.1002/pssr.201004378
[20]
Hoex B, Schmidt J, Pohl P, et al. Silicon surface passivation by atomic layer deposited Al2O3. J Appl Phys, 2008, 104:044903 doi: 10.1063/1.2963707
[21]
Terlinden N M, Dingemans G, van de Sanden M C M, et al. Role of field-effect on c-Si surface passivation by ultrathin (2-20 nm) atomic layer deposited Al2O3. Appl Phys Lett, 2010, 96:112101 doi: 10.1063/1.3334729
[22]
Benick J, Hoex B, van de Sanden M C M, et al. High efficiency n-type Si solar cells on Al2O3-passivated boron emitters. Appl Phys Lett, 2008, 92:253504 doi: 10.1063/1.2945287
[23]
Dullweber T, Gatz S, Hannebauer H, et al. Towards 20% efficient large-area screen-printed rear-passivated silicon solar cells. Progress in Photovoltaics Research and Application, 2012, 20(6):630 doi: 10.1002/pip.1198
[24]
Werner F, Veith B, Zielke D, et al. Electronic and chemical properties of the c-Si/Al2O3 interface. J Appl Phys, 2011, 109:113701 doi: 10.1063/1.3587227
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2441 Times PDF downloads: 16 Times Cited by: 0 Times

    History

    Received: 30 October 2013 Revised: 09 December 2013 Online: Published: 01 May 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Decheng Yang, Fang Lang, Zhuo Xu, Jinchao Shi, Gaofei Li, Zhiyan Hu, Jingfeng Xiong. Influence of atomic layer deposition Al2O3 nano-layer on the surface passivation of silicon solar cells[J]. Journal of Semiconductors, 2014, 35(5): 052002. doi: 10.1088/1674-4926/35/5/052002 D C Yang, F Lang, Z Xu, J C Shi, G F Li, Z Y Hu, J F Xiong. Influence of atomic layer deposition Al2O3 nano-layer on the surface passivation of silicon solar cells[J]. J. Semicond., 2014, 35(5): 052002. doi: 10.1088/1674-4926/35/5/052002.Export: BibTex EndNote
      Citation:
      Decheng Yang, Fang Lang, Zhuo Xu, Jinchao Shi, Gaofei Li, Zhiyan Hu, Jingfeng Xiong. Influence of atomic layer deposition Al2O3 nano-layer on the surface passivation of silicon solar cells[J]. Journal of Semiconductors, 2014, 35(5): 052002. doi: 10.1088/1674-4926/35/5/052002

      D C Yang, F Lang, Z Xu, J C Shi, G F Li, Z Y Hu, J F Xiong. Influence of atomic layer deposition Al2O3 nano-layer on the surface passivation of silicon solar cells[J]. J. Semicond., 2014, 35(5): 052002. doi: 10.1088/1674-4926/35/5/052002.
      Export: BibTex EndNote

      Influence of atomic layer deposition Al2O3 nano-layer on the surface passivation of silicon solar cells

      doi: 10.1088/1674-4926/35/5/052002
      More Information
      • Corresponding author: Yang Decheng, Email:yangdecheng@mail.nankai.edu.cn
      • Received Date: 2013-10-30
      • Revised Date: 2013-12-09
      • Published Date: 2014-05-05

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return