SEMICONDUCTOR MATERIALS

Luminescence properties of tetrapod ZnO nanostructures

Fuxue Wang, Xiaolong Cai, Dawei Yan, Zhaomin Zhu and Xiaofeng Gu

+ Author Affiliations

 Corresponding author: Wang Fuxue,Email:wangfuxue@jiangnan.edu.cn

PDF

Abstract: The tetrapod ZnO nanostructures are synthesized on the Si (100) substrates using the chemical vapor deposition (CVD) method at 1000℃. Each nanostructure has four arms which are about 3-10 μm in length and 0.2-1.5 μm in diameter. Further analyses on structure demonstrate that the tetrapod ZnO nanostructures have single crystalline wurtzite hexagonal structure preferentially oriented in c-axis. The photoluminescence (PL) measurements of the tetrapod ZnO nanostructures revealed a UV peak at 382 nm corresponding to the free exciton emission, and a green peak at 523 nm arising from deep level emission. For comparative analysis, cathodoluminescence (CL) spectra obtained from different regions of an individual tetrapod are investigated. Moreover, a possible growth mechanism of the tetrapod ZnO nanostructures is also discussed based on the experimental results.

Key words: ZnOtetrapodnanostructurescathodoluminescencephotoluminescenceoptical properties



[1]
Rensmo H, Keis K, Lindström H, et al. High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. J Phys Chem B, 1997, 101:2598 doi: 10.1021/jp962918b
[2]
Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292:1897 doi: 10.1126/science.1060367
[3]
Sapkal R, Shinde S, Rajpure K, et al. Photoelectrocatrocatalytic hydrolysis of starch by using sprayed ZnO thin films. Journal of Semiconductors, 2013, 34(5):053001 doi: 10.1088/1674-4926/34/5/053001
[4]
Cheng Zhiming, Zhou Sumei, Chen Tongyun, et al. Acetic acid gas sensors based on Ni2+ doped ZnO nanorods prepared by using the solvothermal method. Journal of Semiconductors, 2012, 33(11):112003 doi: 10.1088/1674-4926/33/11/112003
[5]
Zhang H, Shen L, Guo S. Insight into the structures and properties of morphology-controlled legs of tetrapod-like ZnO nanostructures. J Phys Chem C, 2007, 111:12939 doi: 10.1021/jp074086v
[6]
Zhu Yao, Apostoluk A, Liu Shibin, et al. ZnO nanoparticles as a luminescent down-shifting layer for photosensitive devices. Journal of Semiconductors, 2013, 34(5):053005 doi: 10.1088/1674-4926/34/5/053005
[7]
Liu Li, Wang Lianyuan, Han Yu, et al. Highly sensitive and selective ethanol sensors based on flower-like ZnO nanorods. Journal of Semiconductors, 2011, 32(9):092005 doi: 10.1088/1674-4926/32/9/092005
[8]
Su Shichen, Yang Xiaodong, Hu Candong. Fabrication of ZnO nanowall-network ultraviolet photodetector on Si substrates. Journal of Semiconductors, 2011, 32(7):074008 doi: 10.1088/1674-4926/32/7/074008
[9]
Chen Z, Shan Z, Cao M, et al. Zinc oxide nanotetrapods. Nanotechnology, 2004, 15:365 doi: 10.1088/0957-4484/15/3/023
[10]
Roy V, Djurisic A, Chan W, et al. Luminescent and structural properties of ZnO nanorods prepared under different conditions. Appl Phys Lett, 2003, 83:141 doi: 10.1063/1.1589184
[11]
Newton M C, Warburton P A. ZnO tetrapod nanocrystals. Mater Today, 2007, 10:50
[12]
Hong K, Song R, Liu L, et al. Synthesis and cathode luminescence properties of ZnO multipod nanoneedles. Mater Lett, 2012, 67:202 doi: 10.1016/j.matlet.2011.09.063
[13]
Kong Y, Yu D, Zhang B, et al. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl Phys Lett, 2001, 78:407 doi: 10.1063/1.1342050
[14]
Vanheusden K, Seager C, Warren W, et al. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl Phys Lett, 1996, 68:403 doi: 10.1063/1.116699
[15]
Yan H L, Zhong X L, Wang J B, et al. Cathodoluminescence and room temperature ferromagnetism of Mn-doped ZnO nanorod arrays grown by chemical vapor deposition. Appl Phys Lett, 2007, 90:082503 doi: 10.1063/1.2460297
[16]
Wu X, Siu G, Fu C, et al. Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. Appl Phys Lett, 2001, 78:2285 doi: 10.1063/1.1361288
[17]
Yang Y, Zhu H, Yang G. Growth, structure, and cathodoluminescence of Dy-doped ZnO nanowires. Appl Phys A, 2011, 103:73 doi: 10.1007/s00339-011-6328-x
[18]
Xing Y, Xi Z, Xue Z, et al. Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl Phys Lett, 2003, 83:1689 doi: 10.1063/1.1605808
[19]
Yao B, Chan Y, Wang N. Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl Phys Lett, 2002, 81(4):757 doi: 10.1063/1.1495878
[20]
Gu S, Zhang R, Sun J, et al. Role of interfacial compound formation associated with the use of ZnO buffers layers in the hydride vapor phase epitaxy of GaN. Appl Phys Lett, 2000, 76(23):3454 doi: 10.1063/1.126675
[21]
Li Y, Duan R, Shi P, et al. Synthesis of ZnO nanoparticles on Si substrates using a ZnS source. J Crystal Growth, 2004, 260(3):309
[22]
Zhao D, Andreazza C, Andreazza P, et al. Buffer layer effect on ZnO nanorods growth alignment. Chem Phys Lett, 2005, 408(4):335
[23]
Takeuchi S, Iwanaga H, Fujii M. Octahedral multiple-twin model of tetrapod ZnO crystals. Philos Mag A, 1994, 69(6):1125 doi: 10.1080/01418619408242243
[24]
Yu W, Li X, Gao X. Synthesis and structural characteristics of high-quality tetrapodlike ZnO nanocrystals on ZnO and NiO nanocrystal substrates. J Crystal Growth, 2004, 270(1):92
[25]
Ronning C, Shang N, Gerhards I, et al. Nucleation mechanism of the seed of tetrapod ZnO nanostructures. J Appl Phys, 2005, 98(3):034307 doi: 10.1063/1.1997290
[26]
Fang Z B, Gong H X, Liu X Q, et al. Effects of annealing on the structure and photoluminescence of ZnO films. Acta Physica Sinica, 2003, 52(7):1748
[27]
Spanhel L, Anderson M A. Semiconductor clusters in the sol-gel process:quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. J Am Chem Soc, 1991, 113(8):2826 doi: 10.1021/ja00008a004
[28]
Studenikin S, Golego N, Cocivera M. Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J Appl Phys, 1998, 84(4):2287 doi: 10.1063/1.368295
Fig. 1.  SEM micrographs of the tetrapod ZnO nanostructures at (a) low and (b) high magnifications

Fig. 2.  (a) High-magnification SEM image. (b) EDX spectrum corresponding to the rectangular area of (a) showing the chemical composition of the tetrapod ZnO nanostructure

Fig. 3.  (a) Representative SEM image of the tetrapod ZnO nanostructures. (b) Corresponding CL image. (c) PL spectrum and CL spectra obtained at two different positions of the tetrapod ZnO nanostructures as indicated in (b)

Fig. 4.  Raman spectrum of the tetrapod ZnO nanostructures with the He-Ne (633 nm) lasers as the exciton sources

Fig. 5.  (a) TEM image of a tetrapod ZnO nanostructure, with the SEAD pattern shown in the inset. (b) Correspondent HRTEM image

Fig. 6.  英文标题

英文注解


[1]
Rensmo H, Keis K, Lindström H, et al. High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. J Phys Chem B, 1997, 101:2598 doi: 10.1021/jp962918b
[2]
Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292:1897 doi: 10.1126/science.1060367
[3]
Sapkal R, Shinde S, Rajpure K, et al. Photoelectrocatrocatalytic hydrolysis of starch by using sprayed ZnO thin films. Journal of Semiconductors, 2013, 34(5):053001 doi: 10.1088/1674-4926/34/5/053001
[4]
Cheng Zhiming, Zhou Sumei, Chen Tongyun, et al. Acetic acid gas sensors based on Ni2+ doped ZnO nanorods prepared by using the solvothermal method. Journal of Semiconductors, 2012, 33(11):112003 doi: 10.1088/1674-4926/33/11/112003
[5]
Zhang H, Shen L, Guo S. Insight into the structures and properties of morphology-controlled legs of tetrapod-like ZnO nanostructures. J Phys Chem C, 2007, 111:12939 doi: 10.1021/jp074086v
[6]
Zhu Yao, Apostoluk A, Liu Shibin, et al. ZnO nanoparticles as a luminescent down-shifting layer for photosensitive devices. Journal of Semiconductors, 2013, 34(5):053005 doi: 10.1088/1674-4926/34/5/053005
[7]
Liu Li, Wang Lianyuan, Han Yu, et al. Highly sensitive and selective ethanol sensors based on flower-like ZnO nanorods. Journal of Semiconductors, 2011, 32(9):092005 doi: 10.1088/1674-4926/32/9/092005
[8]
Su Shichen, Yang Xiaodong, Hu Candong. Fabrication of ZnO nanowall-network ultraviolet photodetector on Si substrates. Journal of Semiconductors, 2011, 32(7):074008 doi: 10.1088/1674-4926/32/7/074008
[9]
Chen Z, Shan Z, Cao M, et al. Zinc oxide nanotetrapods. Nanotechnology, 2004, 15:365 doi: 10.1088/0957-4484/15/3/023
[10]
Roy V, Djurisic A, Chan W, et al. Luminescent and structural properties of ZnO nanorods prepared under different conditions. Appl Phys Lett, 2003, 83:141 doi: 10.1063/1.1589184
[11]
Newton M C, Warburton P A. ZnO tetrapod nanocrystals. Mater Today, 2007, 10:50
[12]
Hong K, Song R, Liu L, et al. Synthesis and cathode luminescence properties of ZnO multipod nanoneedles. Mater Lett, 2012, 67:202 doi: 10.1016/j.matlet.2011.09.063
[13]
Kong Y, Yu D, Zhang B, et al. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl Phys Lett, 2001, 78:407 doi: 10.1063/1.1342050
[14]
Vanheusden K, Seager C, Warren W, et al. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl Phys Lett, 1996, 68:403 doi: 10.1063/1.116699
[15]
Yan H L, Zhong X L, Wang J B, et al. Cathodoluminescence and room temperature ferromagnetism of Mn-doped ZnO nanorod arrays grown by chemical vapor deposition. Appl Phys Lett, 2007, 90:082503 doi: 10.1063/1.2460297
[16]
Wu X, Siu G, Fu C, et al. Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. Appl Phys Lett, 2001, 78:2285 doi: 10.1063/1.1361288
[17]
Yang Y, Zhu H, Yang G. Growth, structure, and cathodoluminescence of Dy-doped ZnO nanowires. Appl Phys A, 2011, 103:73 doi: 10.1007/s00339-011-6328-x
[18]
Xing Y, Xi Z, Xue Z, et al. Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl Phys Lett, 2003, 83:1689 doi: 10.1063/1.1605808
[19]
Yao B, Chan Y, Wang N. Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl Phys Lett, 2002, 81(4):757 doi: 10.1063/1.1495878
[20]
Gu S, Zhang R, Sun J, et al. Role of interfacial compound formation associated with the use of ZnO buffers layers in the hydride vapor phase epitaxy of GaN. Appl Phys Lett, 2000, 76(23):3454 doi: 10.1063/1.126675
[21]
Li Y, Duan R, Shi P, et al. Synthesis of ZnO nanoparticles on Si substrates using a ZnS source. J Crystal Growth, 2004, 260(3):309
[22]
Zhao D, Andreazza C, Andreazza P, et al. Buffer layer effect on ZnO nanorods growth alignment. Chem Phys Lett, 2005, 408(4):335
[23]
Takeuchi S, Iwanaga H, Fujii M. Octahedral multiple-twin model of tetrapod ZnO crystals. Philos Mag A, 1994, 69(6):1125 doi: 10.1080/01418619408242243
[24]
Yu W, Li X, Gao X. Synthesis and structural characteristics of high-quality tetrapodlike ZnO nanocrystals on ZnO and NiO nanocrystal substrates. J Crystal Growth, 2004, 270(1):92
[25]
Ronning C, Shang N, Gerhards I, et al. Nucleation mechanism of the seed of tetrapod ZnO nanostructures. J Appl Phys, 2005, 98(3):034307 doi: 10.1063/1.1997290
[26]
Fang Z B, Gong H X, Liu X Q, et al. Effects of annealing on the structure and photoluminescence of ZnO films. Acta Physica Sinica, 2003, 52(7):1748
[27]
Spanhel L, Anderson M A. Semiconductor clusters in the sol-gel process:quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. J Am Chem Soc, 1991, 113(8):2826 doi: 10.1021/ja00008a004
[28]
Studenikin S, Golego N, Cocivera M. Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J Appl Phys, 1998, 84(4):2287 doi: 10.1063/1.368295
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2312 Times PDF downloads: 21 Times Cited by: 0 Times

    History

    Received: 20 November 2013 Revised: 10 February 2014 Online: Published: 01 June 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Fuxue Wang, Xiaolong Cai, Dawei Yan, Zhaomin Zhu, Xiaofeng Gu. Luminescence properties of tetrapod ZnO nanostructures[J]. Journal of Semiconductors, 2014, 35(6): 063004. doi: 10.1088/1674-4926/35/6/063004 F X Wang, X L Cai, D W Yan, Z M Zhu, X F Gu. Luminescence properties of tetrapod ZnO nanostructures[J]. J. Semicond., 2014, 35(6): 063004. doi: 10.1088/1674-4926/35/6/063004.Export: BibTex EndNote
      Citation:
      Fuxue Wang, Xiaolong Cai, Dawei Yan, Zhaomin Zhu, Xiaofeng Gu. Luminescence properties of tetrapod ZnO nanostructures[J]. Journal of Semiconductors, 2014, 35(6): 063004. doi: 10.1088/1674-4926/35/6/063004

      F X Wang, X L Cai, D W Yan, Z M Zhu, X F Gu. Luminescence properties of tetrapod ZnO nanostructures[J]. J. Semicond., 2014, 35(6): 063004. doi: 10.1088/1674-4926/35/6/063004.
      Export: BibTex EndNote

      Luminescence properties of tetrapod ZnO nanostructures

      doi: 10.1088/1674-4926/35/6/063004
      Funds:

      the Fundamental Research Funds for the Central Universities JUSRP11230

      the Natural Science Foundation of Jiangsu Province BK2012110

      Project supported by the Fundamental Research Funds for the Central Universities (Nos. JUSRP11230, JUSRP51323B), the Natural Science Foundation of Jiangsu Province (No. BK2012110), the PAPD of Jiangsu Higher Education Institutions, and the Summit of the Six Top Talents Program of Jiangsu Province (No. DZXX-053).

      the PAPD of Jiangsu Higher Education Institutions 

      the Fundamental Research Funds for the Central Universities JUSRP51323B

      the Summit of the Six Top Talents Program of Jiangsu Province DZXX-053

      More Information
      • Corresponding author: Wang Fuxue,Email:wangfuxue@jiangnan.edu.cn
      • Received Date: 2013-11-20
      • Revised Date: 2014-02-10
      • Published Date: 2014-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return