SEMICONDUCTOR DEVICES

Theoretical calculation of the p-emitter length for snapback-free reverse-conducting IGBT

Liheng Zhu and Xingbi Chen

+ Author Affiliations

 Corresponding author: Zhu Liheng, Email:zhu_li_heng@163.com

PDF

Abstract: A physically based equation for predicting required p-emitter length of a snapback-free reverse-conducting insulated gate bipolar transistor (RC-IGBT) with field-stop structure is proposed. The n-buffer resistances above the p-emitter region with anode geometries of linear strip, circular and annular type are calculated, and based on this, the minimum p-emitter lengths of those three geometries are given and verified by simulation. It is found that good agreement was achieved between the numerical calculation and simulation results. Moreover, the calculation results show that the annular case needs the shortest p-emitter length for RC-IGBT to be snapback-free.

Key words: reverse conductinginsulated gate bipolar transistorvoltage snapback



[1]
Rahimo M, Schlapbach U, Schnell R, et al. Realization of higher output power capability with the bi-mode insulated gate transistor (BIGT). Proc EPE, 2009:1 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5279012
[2]
Donnellan B T, Mawby P A, Rahimo M, et al. Introducing a 1200 V vertical merged IGBT and power MOSFET:the HUBFET. APEC, 2012:152 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6165812
[3]
Minato T, Aono S, Uryu K, et al. Making a bridge from SJ-MOSFET to IGBT via RC-IGBT structure concept for 600 V class SJ-RC-IGBT in a single chip solution. Proc ISPSD, 2012:137 http://ieeexplore.ieee.org/document/6229042/citations
[4]
Zhang Wenliang, Tian Xiaoli, Tan Jingfei, et al. The snapback effect of an RC-IGBT and its simulations. Jounal of Semiconductors, 2013, 34(7):074007 doi: 10.1088/1674-4926/34/7/074007
[5]
Zhu Liheng, Chen Xingbi. Novel reverse conducting insulated gate bipolar transistor with anti-parallel MOS controlled thyristor. Journal of Semiconductors, 2014, 35(7):0740 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=13092602&journal_id=bdtxbcn
[6]
Voss S, Niedernostheide F, Schulze H. Anode design variation in 1200-V trench field-stop reverse-conducting IGBTs. Proc ISPSD, 2008:169 http://www.docin.com/p-1257044913.html
[7]
Storasta L, Kopta A, Rahimo M. A compaison of charge dynamics in the reverse-conducting RC-IGBT and bi-mode insulated gate transistor BiGT. Proc ISPSD, 2010:391 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5544093
[8]
L Storasta, M Rahimo, M Bellini, et al. The radial layout design concept for the bi-mode insulated gate transistor. Proc ISPSD, 2011:56 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5890789
[9]
MEDICI. Two Dimensional Device Simulation Program, ed. 2002. 2. 0, Synopsys Inc. , Fremont, CA, 2002
[10]
Antoniou M, Udrea F, Bauer F, et al. A new way to alleviate the RC IGBT snapback phenomenon:the super junction solution. Proc ISPSD, 2010:153 http://ieeexplore.ieee.org/xpl/abstractKeywords.jsp?reload=true&arnumber=5543970
[11]
Chen X, Zhang Q. Transistor theory and design. Publishing House of Electronics Industry, pp. 124
[12]
Valsamakis E A. Power dissipation calculation of the base spreading and contact resistance of transistors at low current and low frequencies. IEEE Trans Electron Devices, 1986, 33(2):303 doi: 10.1109/T-ED.1986.22483
Fig. 1.  Schematic cross section of the conventional RC-IGBT.

Fig. 2.  Structure sketches of RC-IGBT with anode geometries of (a) linear strip, (b) circular and (c) annular.

Fig. 3.  (Color online) Current flow lines of the RC-IGBT at $V_{\rm AK}$ = 0.7 V. The red line is the current flow lines.

Fig. 4.  Forward output characteristics for (a) linear strip, (b) circular and (c) annular cases.

Fig. 5.  Numerical and simulated lateral current density distributions in the n-buffer layer of the RC-IGBTs with $L_{\rm p-ls}$ of 116 $\mu $m and 35 $\mu $m.

Fig. 6.  (Color online) Output characteristics of two RC-IGBT groups with different area ratio between p-emitter and n$^{+}$ short regions. $S$ = p-emitter area/n$^{+}$ short area.

[1]
Rahimo M, Schlapbach U, Schnell R, et al. Realization of higher output power capability with the bi-mode insulated gate transistor (BIGT). Proc EPE, 2009:1 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5279012
[2]
Donnellan B T, Mawby P A, Rahimo M, et al. Introducing a 1200 V vertical merged IGBT and power MOSFET:the HUBFET. APEC, 2012:152 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6165812
[3]
Minato T, Aono S, Uryu K, et al. Making a bridge from SJ-MOSFET to IGBT via RC-IGBT structure concept for 600 V class SJ-RC-IGBT in a single chip solution. Proc ISPSD, 2012:137 http://ieeexplore.ieee.org/document/6229042/citations
[4]
Zhang Wenliang, Tian Xiaoli, Tan Jingfei, et al. The snapback effect of an RC-IGBT and its simulations. Jounal of Semiconductors, 2013, 34(7):074007 doi: 10.1088/1674-4926/34/7/074007
[5]
Zhu Liheng, Chen Xingbi. Novel reverse conducting insulated gate bipolar transistor with anti-parallel MOS controlled thyristor. Journal of Semiconductors, 2014, 35(7):0740 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=13092602&journal_id=bdtxbcn
[6]
Voss S, Niedernostheide F, Schulze H. Anode design variation in 1200-V trench field-stop reverse-conducting IGBTs. Proc ISPSD, 2008:169 http://www.docin.com/p-1257044913.html
[7]
Storasta L, Kopta A, Rahimo M. A compaison of charge dynamics in the reverse-conducting RC-IGBT and bi-mode insulated gate transistor BiGT. Proc ISPSD, 2010:391 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5544093
[8]
L Storasta, M Rahimo, M Bellini, et al. The radial layout design concept for the bi-mode insulated gate transistor. Proc ISPSD, 2011:56 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5890789
[9]
MEDICI. Two Dimensional Device Simulation Program, ed. 2002. 2. 0, Synopsys Inc. , Fremont, CA, 2002
[10]
Antoniou M, Udrea F, Bauer F, et al. A new way to alleviate the RC IGBT snapback phenomenon:the super junction solution. Proc ISPSD, 2010:153 http://ieeexplore.ieee.org/xpl/abstractKeywords.jsp?reload=true&arnumber=5543970
[11]
Chen X, Zhang Q. Transistor theory and design. Publishing House of Electronics Industry, pp. 124
[12]
Valsamakis E A. Power dissipation calculation of the base spreading and contact resistance of transistors at low current and low frequencies. IEEE Trans Electron Devices, 1986, 33(2):303 doi: 10.1109/T-ED.1986.22483
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2447 Times PDF downloads: 29 Times Cited by: 0 Times

    History

    Received: 12 October 2013 Revised: 13 January 2014 Online: Published: 01 June 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Liheng Zhu, Xingbi Chen. Theoretical calculation of the p-emitter length for snapback-free reverse-conducting IGBT[J]. Journal of Semiconductors, 2014, 35(6): 064009. doi: 10.1088/1674-4926/35/6/064009 L H Zhu, X B Chen. Theoretical calculation of the p-emitter length for snapback-free reverse-conducting IGBT[J]. J. Semicond., 2014, 35(6): 064009. doi: 10.1088/1674-4926/35/6/064009.Export: BibTex EndNote
      Citation:
      Liheng Zhu, Xingbi Chen. Theoretical calculation of the p-emitter length for snapback-free reverse-conducting IGBT[J]. Journal of Semiconductors, 2014, 35(6): 064009. doi: 10.1088/1674-4926/35/6/064009

      L H Zhu, X B Chen. Theoretical calculation of the p-emitter length for snapback-free reverse-conducting IGBT[J]. J. Semicond., 2014, 35(6): 064009. doi: 10.1088/1674-4926/35/6/064009.
      Export: BibTex EndNote

      Theoretical calculation of the p-emitter length for snapback-free reverse-conducting IGBT

      doi: 10.1088/1674-4926/35/6/064009
      Funds:

      the Fundamental Research Funds for the Central Universities E022050205

      the National Natural Science Foundation of China 51237001

      Project supported by the Fundamental Research Funds for the Central Universities (No. E022050205) and the National Natural Science Foundation of China (No. 51237001)

      More Information
      • Corresponding author: Zhu Liheng, Email:zhu_li_heng@163.com
      • Received Date: 2013-10-12
      • Revised Date: 2014-01-13
      • Published Date: 2014-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return