SEMICONDUCTOR DEVICES

Pinch-off voltage modeling for CMOS image pixels with a pinned photodiode structure

Chen Cao, Bing Zhang, Longsheng Wu, Xin Li and Junfeng Wang

+ Author Affiliations

 Corresponding author: Cao Chen, Email:intercaochen@163.com

PDF

Abstract: A novel analytical model of pinch-off voltage for CMOS image pixels with a pinned photodiode structure is proposed. The derived model takes account of the gradient doping distributions in the N buried layer due to the impurity compensation formed by manufacturing processes; the impurity distribution characteristics of two boundary PN junctions located in the region for particular spectrum response of a pinned photodiode are quantitative analyzed. By solving Poisson's equation in vertical barrier regions, the relationships between the pinch-off voltage and the corresponding process parameters such as peak doping concentration, N type width and doping concentration gradient of the N buried layer are established. Test results have shown that the derived model features the variations of the pinch-off voltage versus the process implant conditions more accurately than the traditional model. The research conclusions in this paper provide theoretical evidence for evaluating the pinch-off voltage design.

Key words: pinned photodiodepixel designpinch-off voltageanalytical model



[1]
Fossum E R. CMOS image sensors: electronic camera-on-a-chip. IEEE Trans Electron Devices, 1997, 44: 1689 doi: 10.1109/16.628824
[2]
Lule T, Benthien S, Keller H, et al. Sensitivity of CMOS based imagers and scaling perspectives. IEEE Trans Electron Devices, 2000, 47: 2110 doi: 10.1109/16.877173
[3]
Inoue I, Tanaka N, Yamashita H, et al. Low leakage current and Low operating voltage buried photodiode for a CMOS imager. IEEE Trans Electron Devices, 2003, 50: 43 doi: 10.1109/TED.2002.807525
[4]
Li Binqiao, Yu Junting, Xu Jiangtao, et al. An approach to obtain the pinch-off voltage of 4-T pixel in CMOS image sensor. Journal of Semiconductors, 2010, 31(7): 074010 doi: 10.1088/1674-4926/31/7/074010
[5]
Bigas M, Cabruja E, Forest J, et al. Review of CMOS image sensors. Microelectron J, 2006, 37(5): 433 doi: 10.1016/j.mejo.2005.07.002
[6]
Krymski A I, Bock N E, Tu N, et al. Estimates for Scaling of Pinned Photodiodes. IEEE Workshop on CCD and Advanced Image Sensors, 2005: 60 http://m.alexima.com/pub/Scaling_Pinned.pdf
[7]
Park S, Uh H. The effect of size on photodiode pinch-off voltage for small pixel CMOS image sensors. Microelectron J, 2009, 40: 137 doi: 10.1016/j.mejo.2008.06.071
[8]
Zou Jijun, Chang Benkang, Yang Zhi. Theoretical calculation of quantum yield for exponential-doping GaAs photocathodes. Acta Phys Sin, 2007, 56: 2992(in Chinese) http://wulixb.iphy.ac.cn/EN/article/downloadArticleFile.do?attachType=PDF&id=12953
[9]
Adam G. Investigation of 4T CMOS image sensor design and the effects of radiation damage. PhM Dissertation, University of Surrey, UK, 2010: 5
[10]
Liu Enke, Zhu Bingsheng, Luo Jinsheng. Semiconductor physics. Beijing: Publishing House of Electronics Industry, 2008(in Chinese)
[11]
Lee P P, Guidash R M, Stevens E G, et al. Active pixel sensor integrated with a pinned photodiode. USA Patent, No. 5625210, 1997
[12]
Liang Bin, Chen Shuming, Liu Biwei. Using 3D TCAD simulation to study charge collection of a p-n junction in a 0.18μm bulk process. Journal of Semiconductors, 2008, 29(9): 1692 http://www.jos.ac.cn/bdtxben/ch/reader/view_abstract.aspx?file_no=08011003&flag=1
[13]
Simon M, Kwok K. Physics of semiconductor devices. Xi'an: Xi'an Jiaotong University Press, 2008(in Chinese)
Fig. 1.  Basic 4-transistors CMOS image pixel configuration.

Fig. 2.  Energy band of electrons along x-x' in Fig. 1. (a) Equilibrium state. (b) Full depletion state.

Fig. 3.  Absorption coefficient of silicon as a function of wavelength[9].

Fig. 4.  A simplified three-layer PPD configuration. (a) Equilibrium state. (b) Full depletion state.

Fig. 5.  (a) 3D PPD pixel model. (b) Cross section along x axis.

Fig. 6.  Boundaries doping concentration of N buried layer. (a) Upper junction. (b) Lower junction.

Fig. 7.  (a) Test pattern for measuring the pinch-off voltage. (b) The maximum VD at which ID can flow represents the pinch-off voltage.

Fig. 8.  Pinch-off voltage versus various implant conditions of N buried layer. (a) Different doses. (b) Different energies.

Table 1.   Different implant doses with energy of 150 keV.

Table 2.   Different implant energies with dose of 5 × 1012 cm-2.

[1]
Fossum E R. CMOS image sensors: electronic camera-on-a-chip. IEEE Trans Electron Devices, 1997, 44: 1689 doi: 10.1109/16.628824
[2]
Lule T, Benthien S, Keller H, et al. Sensitivity of CMOS based imagers and scaling perspectives. IEEE Trans Electron Devices, 2000, 47: 2110 doi: 10.1109/16.877173
[3]
Inoue I, Tanaka N, Yamashita H, et al. Low leakage current and Low operating voltage buried photodiode for a CMOS imager. IEEE Trans Electron Devices, 2003, 50: 43 doi: 10.1109/TED.2002.807525
[4]
Li Binqiao, Yu Junting, Xu Jiangtao, et al. An approach to obtain the pinch-off voltage of 4-T pixel in CMOS image sensor. Journal of Semiconductors, 2010, 31(7): 074010 doi: 10.1088/1674-4926/31/7/074010
[5]
Bigas M, Cabruja E, Forest J, et al. Review of CMOS image sensors. Microelectron J, 2006, 37(5): 433 doi: 10.1016/j.mejo.2005.07.002
[6]
Krymski A I, Bock N E, Tu N, et al. Estimates for Scaling of Pinned Photodiodes. IEEE Workshop on CCD and Advanced Image Sensors, 2005: 60 http://m.alexima.com/pub/Scaling_Pinned.pdf
[7]
Park S, Uh H. The effect of size on photodiode pinch-off voltage for small pixel CMOS image sensors. Microelectron J, 2009, 40: 137 doi: 10.1016/j.mejo.2008.06.071
[8]
Zou Jijun, Chang Benkang, Yang Zhi. Theoretical calculation of quantum yield for exponential-doping GaAs photocathodes. Acta Phys Sin, 2007, 56: 2992(in Chinese) http://wulixb.iphy.ac.cn/EN/article/downloadArticleFile.do?attachType=PDF&id=12953
[9]
Adam G. Investigation of 4T CMOS image sensor design and the effects of radiation damage. PhM Dissertation, University of Surrey, UK, 2010: 5
[10]
Liu Enke, Zhu Bingsheng, Luo Jinsheng. Semiconductor physics. Beijing: Publishing House of Electronics Industry, 2008(in Chinese)
[11]
Lee P P, Guidash R M, Stevens E G, et al. Active pixel sensor integrated with a pinned photodiode. USA Patent, No. 5625210, 1997
[12]
Liang Bin, Chen Shuming, Liu Biwei. Using 3D TCAD simulation to study charge collection of a p-n junction in a 0.18μm bulk process. Journal of Semiconductors, 2008, 29(9): 1692 http://www.jos.ac.cn/bdtxben/ch/reader/view_abstract.aspx?file_no=08011003&flag=1
[13]
Simon M, Kwok K. Physics of semiconductor devices. Xi'an: Xi'an Jiaotong University Press, 2008(in Chinese)
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2814 Times PDF downloads: 33 Times Cited by: 0 Times

    History

    Received: 29 November 2013 Revised: 20 January 2014 Online: Published: 01 July 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Chen Cao, Bing Zhang, Longsheng Wu, Xin Li, Junfeng Wang. Pinch-off voltage modeling for CMOS image pixels with a pinned photodiode structure[J]. Journal of Semiconductors, 2014, 35(7): 074012. doi: 10.1088/1674-4926/35/7/074012 C Cao, B Zhang, L S Wu, X Li, J F Wang. Pinch-off voltage modeling for CMOS image pixels with a pinned photodiode structure[J]. J. Semicond., 2014, 35(7): 074012. doi: 10.1088/1674-4926/35/7/074012.Export: BibTex EndNote
      Citation:
      Chen Cao, Bing Zhang, Longsheng Wu, Xin Li, Junfeng Wang. Pinch-off voltage modeling for CMOS image pixels with a pinned photodiode structure[J]. Journal of Semiconductors, 2014, 35(7): 074012. doi: 10.1088/1674-4926/35/7/074012

      C Cao, B Zhang, L S Wu, X Li, J F Wang. Pinch-off voltage modeling for CMOS image pixels with a pinned photodiode structure[J]. J. Semicond., 2014, 35(7): 074012. doi: 10.1088/1674-4926/35/7/074012.
      Export: BibTex EndNote

      Pinch-off voltage modeling for CMOS image pixels with a pinned photodiode structure

      doi: 10.1088/1674-4926/35/7/074012
      More Information
      • Corresponding author: Cao Chen, Email:intercaochen@163.com
      • Received Date: 2013-11-29
      • Revised Date: 2014-01-20
      • Published Date: 2014-07-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return