SEMICONDUCTOR INTEGRATED CIRCUITS

A 3.01-3.82 GHz CMOS LC voltage-controlled oscillator with 6.29% VCO-gain variation for WLAN applications

Xiaolong Liu, Lei Zhang, Li Zhang, Yan Wang and Zhiping Yu

+ Author Affiliations

 Corresponding author: Zhang Lei, Email:zhang.lei@tsinghua.edu.cn

PDF

Abstract: A wideband low-phase-noise LC voltage-controlled oscillator (VCO) with low VCO gain (KVCO) variation for WLAN fractional-N frequency synthesizer application is proposed and designed on a 0.13-μm CMOS process. In order to achieve a low KVCO variation, an extra switched varactor array was added to the LC tank with the conventional switched capacitor array. Based on the proposed switched varactor array compensation technique, the measured KVCO is 43 MHz/V with only 6.29% variation across the entire tuning range. The proposed VCO provides a tuning range of 23.7% from 3.01 to 3.82 GHz, while consuming 9 mA of quiescent current from a 2.3 V supply. The VCO shows a low phase noise of -121.94 dBc/Hz at 1 MHz offset, from the 3.6 GHz carrier.

Key words: LC VCOVCO gain (KVCO)low KVCO variationtuning rangephase noiseCMOS



[1]
Perahia E, Gong M X. Gigabit wireless LANs: an overview of IEEE 802.11ac and 802.11ad. ACM SIGMOBILE Mobile Computing and Communications Review, 2011, 15(3): 23 doi: 10.1145/2073290
[2]
Berny A D, Niknejad A M, Meyer R G. A 1.8-GHz LC VCO with 1.3-GHz tuning range and digital amplitude calibration. IEEE J Solid-State Circuits, 2005, 40(4): 909 doi: 10.1109/JSSC.2004.842851
[3]
Nakamura T, Masuda T, Shiramizu N, et al. A wide-tuning-range VCO with small VCO-gain fluctuation for multi-band W-CDMA RFIC. Proceedings of the 32nd European Solid-State Circuits Conference, 2006: 448 http://ieeexplore.ieee.org/document/4099800/
[4]
Moon Y J, Roh Y S, Jeong C Y, et al. A 4.39-5.26 GHz LC-tank CMOS voltage-controlled oscillator with small VCO-gain variation. IEEE Microw Wireless Compon Lett, 2009, 19(8): 524 doi: 10.1109/LMWC.2009.2024846
[5]
Li Bin, Fan Xiangning, Wang Zhigong. A wideband LC-VCO with small VCO gain variation and adaptive power control. Journal of Semiconductors, 2012, 33(10): 105008 doi: 10.1088/1674-4926/33/10/105008
[6]
Lin T Y, Yu T Y, Ke L W, et al. A low-noise VCO with a constant KVCO for GSM/GPRS/EDGE applications. IEEE Radio Frequency Integrated Circuits Symp, 2008: 387 https://www.infona.pl/resource/bwmeta1.element.ieee-art-000004561460
[7]
Wu T, Corvallis O R, Hanumolu P K, et al. Method for a constant loop bandwidth in LC-VCO PLL frequency synthesizers. IEEE J Solid-State Circuits, 2009, 44(2): 427 doi: 10.1109/JSSC.2008.2010792
[8]
Shin J, Shin H. A 1.9-3.8 GHz Δ Σ fractional-N PLL frequency synthesizer with fast auto-calibration of loop bandwidth and VCO frequency. IEEE J Solid-State Circuits, 2012, 47(3): 665 doi: 10.1109/JSSC.2011.2179733
[9]
Floyd M G. Phaselock techniques. 3rd ed. New York: Wiley, 2005
[10]
Lu L, Chen J, Yuan L, et al. An 18-mW 1.175-2-GHz frequency synthesizer with constant bandwidth for DVB-T tuners. IEEE Trans Microw Theory Tech, 2009, 57(4): 928 doi: 10.1109/TMTT.2009.2014449
[11]
Levantino S, Samori C, Bonfanti A, et al. Frequency dependence on bias current in 5 GHz CMOS VCOs: impact on tuning range and flicker noise upconversion. IEEE J Solid-State Circuits, 2002, 37(8): 1003 doi: 10.1109/JSSC.2002.800969
[12]
Gao H, Yan Y, Du Z, et al. A wideband LC-VCO with small VCO-gain fluctuation for mobile DTV application. Analog Integrated Circuits and Signal Processing, 2011, 68: 1 doi: 10.1007/s10470-010-9592-3
[13]
Mira J, Divel T, Ramet S, ea al. Distributed MOS varactor biasing for VCO gain equalization in 0.13μm CMOS technology. IEEE Radio Frequency Integrated Circuits Symp, 2004: 6
[14]
Hajimiri A, Lee T H. Design issues in CMOS differential LC oscillators. IEEE J Solid-State Circuits, 1999, 34(5): 717 doi: 10.1109/4.760384
[15]
Ruippo P, Lehtonen T A, Tchamov N T. An UMTS and GSM low phase noise inductively tuned LC VCO. IEEE Microw Wireless Compon Lett, 2010, 20(3): 163 doi: 10.1109/LMWC.2010.2040219
[16]
Hegazi E, Sjoland H, Abidi A A. A filtering technique to lower LC oscillator phase noise. IEEE J Solid-State Circuits, 2001, 36(12): 1921 doi: 10.1109/4.972142
[17]
Wu, Y Aparin V. A monolithic low phase noise 1.7 GHz CMO S VCO for zero-IF cellular CDMA receivers. IEEE International Solid State Circuits Conf, 2004: 396 http://ieeexplore.ieee.org/document/1332761/authors
[18]
Samadian S. A low phase noise quad-band CMOS VCO with minimized gain variation for GSM/GPRS/EDGE. IEEE International Symposium on Circuits and Systems, 2007: 3287 http://cn.bing.com/academic/profile?id=97973ce616a779dda9d16e60d89924fe&encoded=0&v=paper_preview&mkt=zh-cn
[19]
Jia L, Choi Y B, Yeoh W G. A 5.8-GHz VCO with precision gain control. IEEE Radio Frequency Integrated Circuits Symp, 2007: 701
Fig. 1.  Block diagram of a typical fourth-order type Ⅱ integrate frequency synthesizer with a passive loop filter.

Fig. 2.  Conventional topology. (a) Switched capacitor and a varactor. (b) Tuning characteristics with large KVCO variation.

Fig. 3.  Proposed LC tank. (a) Proposed KVCO suppressing technique. (b) Capacitance against tuning voltage for the varactor unit.

Fig. 4.  Proposed wideband VCO with low KVCO variation.

Fig. 5.  The schematic of the bandgap reference.

Fig. 6.  Chip micrograph of the proposed VCO.

Fig. 7.  Measured Vbg of the bandgap against supply voltage.

Fig. 8.  Measured frequency tuning range of the proposed VCO.

Fig. 9.  Measured KVCO variation of the proposed VCO.

Fig. 10.  Measured phase noise of the proposed VCO.

Table 1.   Comparison of performances with prior works.

[1]
Perahia E, Gong M X. Gigabit wireless LANs: an overview of IEEE 802.11ac and 802.11ad. ACM SIGMOBILE Mobile Computing and Communications Review, 2011, 15(3): 23 doi: 10.1145/2073290
[2]
Berny A D, Niknejad A M, Meyer R G. A 1.8-GHz LC VCO with 1.3-GHz tuning range and digital amplitude calibration. IEEE J Solid-State Circuits, 2005, 40(4): 909 doi: 10.1109/JSSC.2004.842851
[3]
Nakamura T, Masuda T, Shiramizu N, et al. A wide-tuning-range VCO with small VCO-gain fluctuation for multi-band W-CDMA RFIC. Proceedings of the 32nd European Solid-State Circuits Conference, 2006: 448 http://ieeexplore.ieee.org/document/4099800/
[4]
Moon Y J, Roh Y S, Jeong C Y, et al. A 4.39-5.26 GHz LC-tank CMOS voltage-controlled oscillator with small VCO-gain variation. IEEE Microw Wireless Compon Lett, 2009, 19(8): 524 doi: 10.1109/LMWC.2009.2024846
[5]
Li Bin, Fan Xiangning, Wang Zhigong. A wideband LC-VCO with small VCO gain variation and adaptive power control. Journal of Semiconductors, 2012, 33(10): 105008 doi: 10.1088/1674-4926/33/10/105008
[6]
Lin T Y, Yu T Y, Ke L W, et al. A low-noise VCO with a constant KVCO for GSM/GPRS/EDGE applications. IEEE Radio Frequency Integrated Circuits Symp, 2008: 387 https://www.infona.pl/resource/bwmeta1.element.ieee-art-000004561460
[7]
Wu T, Corvallis O R, Hanumolu P K, et al. Method for a constant loop bandwidth in LC-VCO PLL frequency synthesizers. IEEE J Solid-State Circuits, 2009, 44(2): 427 doi: 10.1109/JSSC.2008.2010792
[8]
Shin J, Shin H. A 1.9-3.8 GHz Δ Σ fractional-N PLL frequency synthesizer with fast auto-calibration of loop bandwidth and VCO frequency. IEEE J Solid-State Circuits, 2012, 47(3): 665 doi: 10.1109/JSSC.2011.2179733
[9]
Floyd M G. Phaselock techniques. 3rd ed. New York: Wiley, 2005
[10]
Lu L, Chen J, Yuan L, et al. An 18-mW 1.175-2-GHz frequency synthesizer with constant bandwidth for DVB-T tuners. IEEE Trans Microw Theory Tech, 2009, 57(4): 928 doi: 10.1109/TMTT.2009.2014449
[11]
Levantino S, Samori C, Bonfanti A, et al. Frequency dependence on bias current in 5 GHz CMOS VCOs: impact on tuning range and flicker noise upconversion. IEEE J Solid-State Circuits, 2002, 37(8): 1003 doi: 10.1109/JSSC.2002.800969
[12]
Gao H, Yan Y, Du Z, et al. A wideband LC-VCO with small VCO-gain fluctuation for mobile DTV application. Analog Integrated Circuits and Signal Processing, 2011, 68: 1 doi: 10.1007/s10470-010-9592-3
[13]
Mira J, Divel T, Ramet S, ea al. Distributed MOS varactor biasing for VCO gain equalization in 0.13μm CMOS technology. IEEE Radio Frequency Integrated Circuits Symp, 2004: 6
[14]
Hajimiri A, Lee T H. Design issues in CMOS differential LC oscillators. IEEE J Solid-State Circuits, 1999, 34(5): 717 doi: 10.1109/4.760384
[15]
Ruippo P, Lehtonen T A, Tchamov N T. An UMTS and GSM low phase noise inductively tuned LC VCO. IEEE Microw Wireless Compon Lett, 2010, 20(3): 163 doi: 10.1109/LMWC.2010.2040219
[16]
Hegazi E, Sjoland H, Abidi A A. A filtering technique to lower LC oscillator phase noise. IEEE J Solid-State Circuits, 2001, 36(12): 1921 doi: 10.1109/4.972142
[17]
Wu, Y Aparin V. A monolithic low phase noise 1.7 GHz CMO S VCO for zero-IF cellular CDMA receivers. IEEE International Solid State Circuits Conf, 2004: 396 http://ieeexplore.ieee.org/document/1332761/authors
[18]
Samadian S. A low phase noise quad-band CMOS VCO with minimized gain variation for GSM/GPRS/EDGE. IEEE International Symposium on Circuits and Systems, 2007: 3287 http://cn.bing.com/academic/profile?id=97973ce616a779dda9d16e60d89924fe&encoded=0&v=paper_preview&mkt=zh-cn
[19]
Jia L, Choi Y B, Yeoh W G. A 5.8-GHz VCO with precision gain control. IEEE Radio Frequency Integrated Circuits Symp, 2007: 701
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2597 Times PDF downloads: 18 Times Cited by: 0 Times

    History

    Received: 13 January 2014 Revised: 16 February 2014 Online: Published: 01 July 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiaolong Liu, Lei Zhang, Li Zhang, Yan Wang, Zhiping Yu. A 3.01-3.82 GHz CMOS LC voltage-controlled oscillator with 6.29% VCO-gain variation for WLAN applications[J]. Journal of Semiconductors, 2014, 35(7): 075002. doi: 10.1088/1674-4926/35/7/075002 X L Liu, L Zhang, L Zhang, Y Wang, Z P Yu. A 3.01-3.82 GHz CMOS LC voltage-controlled oscillator with 6.29% VCO-gain variation for WLAN applications[J]. J. Semicond., 2014, 35(7): 075002. doi: 10.1088/1674-4926/35/7/075002.Export: BibTex EndNote
      Citation:
      Xiaolong Liu, Lei Zhang, Li Zhang, Yan Wang, Zhiping Yu. A 3.01-3.82 GHz CMOS LC voltage-controlled oscillator with 6.29% VCO-gain variation for WLAN applications[J]. Journal of Semiconductors, 2014, 35(7): 075002. doi: 10.1088/1674-4926/35/7/075002

      X L Liu, L Zhang, L Zhang, Y Wang, Z P Yu. A 3.01-3.82 GHz CMOS LC voltage-controlled oscillator with 6.29% VCO-gain variation for WLAN applications[J]. J. Semicond., 2014, 35(7): 075002. doi: 10.1088/1674-4926/35/7/075002.
      Export: BibTex EndNote

      A 3.01-3.82 GHz CMOS LC voltage-controlled oscillator with 6.29% VCO-gain variation for WLAN applications

      doi: 10.1088/1674-4926/35/7/075002
      Funds:

      Project supported by the State Key Development Program for Basic Research of China (No. 2010CB327404), the National High Technology Research and Development Program of China (No. 2011AA010202), the National Science and Technology Major Project of China (No. 2012ZX03004004), the National Natural Science Foundation of China (Nos. 61176034, 61101001, 61204026), and the Tsinghua University Initiative Scientific Research Program

      the National Natural Science Foundation of China 61176034

      the State Key Development Program for Basic Research of China 2010CB327404

      the Tsinghua University Initiative Scientific Research Program 

      the National Science and Technology Major Project of China 2012ZX03004004

      the National High Technology Research and Development Program of China 2011AA010202

      More Information
      • Corresponding author: Zhang Lei, Email:zhang.lei@tsinghua.edu.cn
      • Received Date: 2014-01-13
      • Revised Date: 2014-02-16
      • Published Date: 2014-07-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return