SEMICONDUCTOR PHYSICS

Influence of temperature on tunneling-enhanced recombination in Si based p-i-n photodiodes

P. Dalapati, N.B. Manik and A.N. Basu

+ Author Affiliations

 Corresponding author: N. B. Manik, Email:nb_manik@yahoo.co.in

PDF

Abstract: We investigate the dominant dark current transport mechanism in Si based p-i-n photodiodes, namely, BPW 21R, SFH 205FA and BPX 61 photodiodes in the temperature range of 350 to 139 K. The forward current-voltage characteristics of these photodiodes are explained via the tunneling enhanced recombination model, which gives a quantitative description of the electronic mechanism in the p-i-n junction photodiodes. The observed temperature dependence of the saturation current and the diode ideality factor of these devices agree well with theoretical predictions; the analysis also indicates the importance of doping for enhancement of tunneling. The present study will be helpful in applying the devices at low temperature ambience.

Key words: photodiodelow temperatureideality factorreverse saturation currenttunneling energy



[1]
Manik N B, Basu A N, Mukherjee S C. Characterisation of the photodetector and light emitting diode at above liquid nitrogen temperature. Cryogenics, 2000, 40:341 doi: 10.1016/S0011-2275(00)00036-9
[2]
Dalapati P, Manik N B, Basu A N. Effect of temperature on the intensity and carrier lifetime of an AlGaAs based red light emitting diode. Journal of Semiconductors, 2013, 34:092001 doi: 10.1088/1674-4926/34/9/092001
[3]
Ngoepe P N M, Meyer W E, Diale M, et al. Optoelectronic characterization of Au/Ni/n-AlGaN photodiodes after annealing at different temperatures. Physica B, 2012, 407:1628 doi: 10.1016/j.physb.2011.09.102
[4]
Bayhan H, Ozden S. Forward and reverse current-voltage-temperature characteristics of a typical BPW34 photodiode. Solid-State Electron, 2006, 50:1563 doi: 10.1016/j.sse.2006.08.015
[5]
Chand S, Kumar J. On the existence of a distribution of barrier heights in Pd2Si/Si Schottky diodes. J Appl Phys, 1996, 80:288 doi: 10.1063/1.362818
[6]
Jensen N, Rau U, Hausner R M, et al. Recombination mechanisms in amorphous silicon crystalline silicon heterojunction solar cells. J Appl Phys, 2000, 87:2639 doi: 10.1063/1.372230
[7]
Bayhan H. Tunneling-enhanced recombination in polycrystalline CdS/CdTe solar cells. Turk J Phys, 2006, 30:109 http://adsabs.harvard.edu/abs/2006TJPh...30..109B
[8]
Nadenau V, Rau U, Jasenek A, et al. Electronic properties of CuGaSe2-based heterojunction solar cells. Part Ⅰ. Transport analysis. J Appl Phys, 2000, 87:584 doi: 10.1063/1.371903
[9]
Lin Y J. Application of the thermionic field emission model in the study of a Schottky barrier of Ni on p-GaN from current-voltage measurements. Appl Phys Lett, 2005, 86:122109 doi: 10.1063/1.1890476
[10]
Cheng C J, Zhang X F, Lu Z X, et al. Temperature dependence on current-voltage characteristics of Ni/Au-Al0.45Ga0.55N Schottky photodiode. Appl Phys Lett, 2008, 92:103505 doi: 10.1063/1.2896298
[11]
Yu L S, Liu Q Z, Xing Q J, et al. The role of the tunneling component in the current-voltage characteristics of metal-GaN Schottky diodes. J Appl Phys, 1998, 84:2099 doi: 10.1063/1.368270
[12]
[13]
[14]
Chakrabarti P, Gawarikar A, Mehta V, et al. Effect of trap-assisted tunneling (TAT) on the performance of homojunction mid-infrared photodetectors based on InAsSb. J Microw Optoelectron, 2006, 5:1 https://www.researchgate.net/publication/237451707_Effect_of_Trap-assisted_Tunneling_TAT_on_the_Performance_of_Homojunction_Mid-Infrared_Photodetectors_based_on_InAsSb
[15]
Hu S, Han P, Wang S, et al. Improved photoresponse characteristics in Se-doped Si photodiodes fabricated using picosecond pulsed laser mixing. Semicond Sci Technol, 2012, 27:1020021 http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2012SeScT..27j2002H&db_key=PHY&link_type=ABSTRACT
Fig. 1.  The dark $\ln I$-$V$ characteristics of (a) BPW 21R, (b) SFH 205FA, (c) BPX 61 photodetectors in the temperature range 350 to 139 K.

Fig. 2.  The variation of the ideality factor $n$ and the $nT$ parameter with temperature (a) for BPW 21R and SFH 205FA photodetectors and (b) for the BPX 61 photodetector. Continuous lines connecting experimental points in both figures are only a guide for the eye.

Fig. 3.  Temperature dependence of the inverse diode ideality factors 1/$n$. Numerical fits (continuous line) according to Eq. (8) are shown for the BPW 21R, SFH 205FA and BPX 61 devices. The solid circle, square and triangle indicate the experimental points. The values for parameter $E_{00}$ are 0.101, 0.112 and 23.76 meV for BPW 21R, SFH 205FA and BPX 61 photodetectors respectively.

Fig. 4.  A modified Arrhenius plot of \/ $n\ln I_{0}$ versus 1000 / $T$ according to Eq. (7). The solid square, circle and triangle indicate the experimental points. The slope directly gives the activation energies ($E_{\rm a})$. The linear fits show $E_{\rm a}$ are 1.006, 1.128 and 1.132 eV for BPW 21R, SFH 205FA and BPX 61 photodetectors respectively.

Table 1.   The values of reverse saturation current (I0), ideality factor (n) for BPW 21R, SFH 205FA and BPX 61 photodetectors.

[1]
Manik N B, Basu A N, Mukherjee S C. Characterisation of the photodetector and light emitting diode at above liquid nitrogen temperature. Cryogenics, 2000, 40:341 doi: 10.1016/S0011-2275(00)00036-9
[2]
Dalapati P, Manik N B, Basu A N. Effect of temperature on the intensity and carrier lifetime of an AlGaAs based red light emitting diode. Journal of Semiconductors, 2013, 34:092001 doi: 10.1088/1674-4926/34/9/092001
[3]
Ngoepe P N M, Meyer W E, Diale M, et al. Optoelectronic characterization of Au/Ni/n-AlGaN photodiodes after annealing at different temperatures. Physica B, 2012, 407:1628 doi: 10.1016/j.physb.2011.09.102
[4]
Bayhan H, Ozden S. Forward and reverse current-voltage-temperature characteristics of a typical BPW34 photodiode. Solid-State Electron, 2006, 50:1563 doi: 10.1016/j.sse.2006.08.015
[5]
Chand S, Kumar J. On the existence of a distribution of barrier heights in Pd2Si/Si Schottky diodes. J Appl Phys, 1996, 80:288 doi: 10.1063/1.362818
[6]
Jensen N, Rau U, Hausner R M, et al. Recombination mechanisms in amorphous silicon crystalline silicon heterojunction solar cells. J Appl Phys, 2000, 87:2639 doi: 10.1063/1.372230
[7]
Bayhan H. Tunneling-enhanced recombination in polycrystalline CdS/CdTe solar cells. Turk J Phys, 2006, 30:109 http://adsabs.harvard.edu/abs/2006TJPh...30..109B
[8]
Nadenau V, Rau U, Jasenek A, et al. Electronic properties of CuGaSe2-based heterojunction solar cells. Part Ⅰ. Transport analysis. J Appl Phys, 2000, 87:584 doi: 10.1063/1.371903
[9]
Lin Y J. Application of the thermionic field emission model in the study of a Schottky barrier of Ni on p-GaN from current-voltage measurements. Appl Phys Lett, 2005, 86:122109 doi: 10.1063/1.1890476
[10]
Cheng C J, Zhang X F, Lu Z X, et al. Temperature dependence on current-voltage characteristics of Ni/Au-Al0.45Ga0.55N Schottky photodiode. Appl Phys Lett, 2008, 92:103505 doi: 10.1063/1.2896298
[11]
Yu L S, Liu Q Z, Xing Q J, et al. The role of the tunneling component in the current-voltage characteristics of metal-GaN Schottky diodes. J Appl Phys, 1998, 84:2099 doi: 10.1063/1.368270
[12]
[13]
[14]
Chakrabarti P, Gawarikar A, Mehta V, et al. Effect of trap-assisted tunneling (TAT) on the performance of homojunction mid-infrared photodetectors based on InAsSb. J Microw Optoelectron, 2006, 5:1 https://www.researchgate.net/publication/237451707_Effect_of_Trap-assisted_Tunneling_TAT_on_the_Performance_of_Homojunction_Mid-Infrared_Photodetectors_based_on_InAsSb
[15]
Hu S, Han P, Wang S, et al. Improved photoresponse characteristics in Se-doped Si photodiodes fabricated using picosecond pulsed laser mixing. Semicond Sci Technol, 2012, 27:1020021 http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2012SeScT..27j2002H&db_key=PHY&link_type=ABSTRACT
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2455 Times PDF downloads: 19 Times Cited by: 0 Times

    History

    Received: 06 November 2013 Revised: 20 March 2014 Online: Published: 01 August 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      P. Dalapati, N.B. Manik, A.N. Basu. Influence of temperature on tunneling-enhanced recombination in Si based p-i-n photodiodes[J]. Journal of Semiconductors, 2014, 35(8): 082001. doi: 10.1088/1674-4926/35/8/082001 P. Dalapati, N.B. Manik, A.N. Basu. Influence of temperature on tunneling-enhanced recombination in Si based p-i-n photodiodes[J]. J. Semicond., 2014, 35(8): 082001. doi: 10.1088/1674-4926/35/8/082001.Export: BibTex EndNote
      Citation:
      P. Dalapati, N.B. Manik, A.N. Basu. Influence of temperature on tunneling-enhanced recombination in Si based p-i-n photodiodes[J]. Journal of Semiconductors, 2014, 35(8): 082001. doi: 10.1088/1674-4926/35/8/082001

      P. Dalapati, N.B. Manik, A.N. Basu. Influence of temperature on tunneling-enhanced recombination in Si based p-i-n photodiodes[J]. J. Semicond., 2014, 35(8): 082001. doi: 10.1088/1674-4926/35/8/082001.
      Export: BibTex EndNote

      Influence of temperature on tunneling-enhanced recombination in Si based p-i-n photodiodes

      doi: 10.1088/1674-4926/35/8/082001
      More Information
      • Corresponding author: N. B. Manik, Email:nb_manik@yahoo.co.in
      • Received Date: 2013-11-06
      • Revised Date: 2014-03-20
      • Published Date: 2014-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return