INVITED REVIEW PAPERS

A review:aluminum nitride MEMS contour-mode resonator

Yunhong Hou1, Meng Zhang1, Guowei Han1, Chaowei Si1, Yongmei Zhao1, 2 and Jin Ning1, 2,

+ Author Affiliations

 Corresponding author: Ning Jin, Email: ningjin@semi.ac.cn

PDF

Abstract: Over the past several decades, the technology of micro-electromechanical system (MEMS) has advanced. A clear need of miniaturization and integration of electronics components has had new solutions for the next generation of wireless communications. The aluminum nitride (AlN) MEMS contour-mode resonator (CMR) has emerged and become promising and competitive due to the advantages of the small size, high quality factor and frequency, low resistance, compatibility with integrated circuit (IC) technology, and the ability of integrating multi-frequency devices on a single chip. In this article, a comprehensive review of AlN MEMS CMR technology will be presented, including its basic working principle, main structures, fabrication processes, and methods of performance optimization. Among these, the deposition and etching process of the AlN film will be specially emphasized and recent advances in various performance optimization methods of the CMR will be given through specific examples which are mainly focused on temperature compensation and reducing anchor losses. This review will conclude with an assessment of the challenges and future trends of the CMR.

Key words: MEMS contour-mode resonatorAlNmagnetron sputteringinductively coupled plasma (ICP) etchingthe temperature stabilityquality factor (Q)



[1]
Jing W, Ren Z, Nguyen C T C. 1.156-GHz self-aligned vibrating micromechanical disk resonator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51(12): 1607 doi: 10.1109/TUFFC.2004.1386679
[2]
Pourkamali S, Hashimura A, Abdolvand R, et al. High-Q single crystal silicon harpss capacitive beam resonators with selfaligned sub-100-nm transduction gaps. J Microelectromechan Syst, 2003, 12(4): 487 doi: 10.1109/JMEMS.2003.811726
[3]
Hung L W, Nguyen C T C. Capacitive-piezoelectric AlN resonators with Q > 12000. IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS), 2011: 173 http://cn.bing.com/academic/profile?id=2165998200&encoded=0&v=paper_preview&mkt=zh-cn
[4]
Lee J E Y, Seshia A A. 5.4-MHz single-crystal silicon wine glass mode disk resonator with quality factor of 2 million. Sensors and Actuators A, 2009, 156(1): 28 doi: 10.1016/j.sna.2009.02.007
[5]
Liu Bo, Chen Xiao, Cai Hualin, et al. Surface acoustic wave devices for sensor applications. Journal of Semiconductors, 2016, 37(2): 021001 doi: 10.1088/1674-4926/37/2/021001
[6]
Shu L, Jiang J, Peng B, et al. AlN film SAW resonator integrated with metal structure. Electron Lett, 2015, 51(5): 379 doi: 10.1049/el.2014.3495
[7]
Stratton F P, Chang D T, Kirby D J, et al. A MEMS-based quartz resonator technology for GHz applications. 2004 Proceedings of the 2004 IEEE International Proceedings of the Frequency Control Symposium and Exposition, 2004
[8]
Mueller W. A brief overview of FBAR technology. Agilent Technologies, 2001
[9]
Loebl H P, Klee M, Metzmacher C, et al. Piezoelectric thin AlN films for bulk acoustic wave (BAW) resonators. Materials Chemistry and Physics, 2003, 79(2/3): 143 http://cn.bing.com/academic/profile?id=1987528942&encoded=0&v=paper_preview&mkt=zh-cn
[10]
Penunuri D, Lakin K M. RF filter design using LTCC and thin film BAW technology. 2001 IEEE Proceedings of the Ultrasonics Symposium, 2001
[11]
Lobl H P, Klee M, Milsom R, et al. Materials for bulk acoustic wave (BAW) resonators and filters. Journal of the European Ceramic Society, 2001, 21(15): 2633 doi: 10.1016/S0955-2219(01)00329-6
[12]
Yong W. The structural analysis and simulation of the thin film bulk acoustic resonator. University of Electronic Science and Technology of China, 2007
[13]
Kumar Y, Rangra K, Agarwal R. Design and simulation of FBAR with different electrodes material configuration. International Journal of Engineering Trends and Technology, 2015, 28(6): 294 doi: 10.14445/22315381/IJETT-V28P256
[14]
Piazza G, Stephanou P J, Pisano A P. AlN contour-mode vibrating RF MEMS for next generation wireless communications. 2006 Proceeding of the 36th European Proceedings of the Solid-State Device Research Conference, 2006
[15]
Rinaldi M, Zuo C, Spiegel J V D, et al. Reconfigurable CMOS oscillator based on multifrequency AlN contour-mode MEMS resonators. IEEE Trans Electron Devices, 2011, 58(5): 1281 doi: 10.1109/TED.2011.2104961
[16]
Piazza G, Stephanou P J, Pisano A P. Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators. Microelectromechan Syst, 2006, 15(6): 13 http://cn.bing.com/academic/profile?id=2100506356&encoded=0&v=paper_preview&mkt=zh-cn
[17]
Johnson R A. Mechanical filters in electronics. Wiley, 1983
[18]
Piazza G, Stephanou P J, Porter J M, et al. Low motional resistance ring-shaped contour-mode aluminum nitride piezoelectric micromechanical resonators for UHF applications. 2005 18th IEEE International Conference on Proceedings of the Micro Electro Mechanical Systems, 2005
[19]
Imtiaz A, Khan F, Walling J. Contour-mode ring-shaped AlN microresonator on Si and feasibility of its application in seriesresonant converter. IEEE Trans Power Electron, 2014, 30(8): 4437
[20]
Rinaldi M, Zuniga C, Zuo C, et al. Super-high-frequency twoport AlN contour-mode resonators for RF applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(1): 38 doi: 10.1109/TUFFC.2010.1376
[21]
Zuo C, Spiegel J V D, Piazza G. 1.5-GHz CMOS voltagecontrolled oscillator based on thickness-field-excited piezoelectric AlN contour-mode MEMS resonators. 2010 IEEE Proceedings of the Custom Integrated Circuits Conference (CICC), 2010
[22]
Zuo C, Spiegel J V D, Piazza G. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour-mode MEMS resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(1): 82 doi: 10.1109/TUFFC.1382
[23]
Nancy S, Usama Z, Gianluca P. Residual noise reduction in AlN resonators by prolonged RF excitation. Proceedings of the 2014 IEEE International Frequency Control Symposium (FCS), 2014
[24]
Lu R, Gao A, Gong S. Parametric excitation in geometrically optimized AlN contour mode resonators. Proceedings of the 2015 Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum, 2015
[25]
Cassella C, Segovia-Fernandez J, Piazza G. Segmented electrode excitation of aluminum nitride contour mode resonators to optimize the device figure of merit. Proceedings of the Solid- State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVⅡ), 2013 Transducers & Eurosensors XXVⅡ: The 17th International Conference on, F 16-20 June 2013, 2013
[26]
Naik R S, Lutsky J J, Reif R, et al. Measurements of the bulk, c-axis electromechanical coupling constant as a function of AlN film quality. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, 47(1): 292 doi: 10.1109/58.818773
[27]
Shang Zhengguo, Li Dongling, Wen Zhiyu, et al. The fabrication of vibration energy harvester arrays based on AlN piezoelectric film. Journal of Semiconductors, 2013, 34(11): 114013 doi: 10.1088/1674-4926/34/11/114013
[28]
Iriarte G F, Rodrguez J G, Calle F. Synthesis of c-axis oriented AlN thin films on different substrates: a review. Materials Research Bulletin, 2010, 45(9): 1039 doi: 10.1016/j.materresbull.2010.05.035
[29]
Clement M, Olivares J, Capilla J, et al. Influence of crystal quality on the excitation and propagation of surface and bulk acoustic waves in polycrystalline AlN films. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(1): 128 doi: 10.1109/TUFFC.2012.2163
[30]
Felmetsger V V, Mikhov M K, Laptev P N. Effect of predeposition rf plasma etching on wafer surface morphology and crystal orientation of piezoelectric AlN thin films. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62(2): 387 doi: 10.1109/TUFFC.2014.006742
[31]
Xiong J, Gu H S, Hu K, et al. Influence of substrate metals on the crystal growth of AlN films. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(1): 98 doi: 10.1007/s12613-010-0117-y
[32]
Ababneh A, Alsumady M, Seidel H, et al. C-axis orientation and piezoelectric coefficients of AlN thin films sputter-deposited on titanium bottom electrodes. Appl Surf Sci, 2012, 259: 59 doi: 10.1016/j.apsusc.2012.06.086
[33]
Felmetsger V V, Mikhov M K. Deposition of smooth and highly (111) textured al bottom electrodes for AlN-based electroacoustic devices. Proceedings of the 2012 IEEE International Frequency Control Symposium, 2012
[34]
Felmetsger V V, Laptev P N, Tanner S M. Crystal orientation and stress in ac reactively sputtered AlN films on Mo electrodes for electro-acoustic devices. Proceedings of the 2008 IEEE Ultrasonics Symposium, 2008
[35]
Sharma J, Fernando S, Deng W, et al. Molybdenum etching using an SF6, BCl3 and Ar based recipe for high aspect ratio MEMS device fabrication. J Micromechan Microeng, 2013, 23(7): 075025 doi: 10.1088/0960-1317/23/7/075025
[36]
Kamohara T, Akiyama M, Ueno N, et al. Local epitaxial growth of aluminum nitride and molybdenum thin films in fiber textureusing aluminum nitride interlayer. Appl Phys Lett, 2006, 89(7): 071919 doi: 10.1063/1.2337558
[37]
Kamohara T, Akiyama M, Ueno N, et al. Influence of aluminum nitride interlayers on crystal orientation and piezoelectric property of aluminum nitride thin films prepared on titanium electrodes. Thin Solid Films, 2007, 515(11): 4565 doi: 10.1016/j.tsf.2006.11.032
[38]
Iriarte G F, Bjurstrom J, Westlinder J, et al. Synthesis of c-axisoriented AlN thin films on high-conducting layers: Al, Mo, Ti, TiN, and Ni. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(7): 1170 doi: 10.1109/TUFFC.2005.1504003
[39]
Barth S, Bartzsch H, Gloess D, et al. Sputter deposition of stresscontrolled piezoelectric AlN and AlScN films for ultrasonic and energy harvesting applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(8): 1329 doi: 10.1109/TUFFC.2014.3040
[40]
Ababneh A, Schmid U, Hernando J, et al. The influence of sputter deposition parameters on piezoelectric and mechanical properties of AlN thin films. Mater Sci Eng B, 2010, 172(3): 253 doi: 10.1016/j.mseb.2010.05.026
[41]
Wang J, Zhang Q, Yang G, et al. Effect of substrate temperature and bias voltage on the properties in DC magnetron sputtered AlN films on glass substrates. Journal of Materials Science: Materials in Electronics, 2016, 27(3): 1 http://cn.bing.com/academic/profile?id=2286135899&encoded=0&v=paper_preview&mkt=zh-cn
[42]
Aït Aïssa K, Elmazria O, Boulet P, et al. Investigations of AlN thin film crystalline properties in a wide temperature range by in situ X-ray diffraction measurements: correlation with AlN/sapphire-based SAW structure performance. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62(7): 1397 doi: 10.1109/TUFFC.2014.006868
[43]
Khan F A, Zhou L, Kumar V, et al. High rate etching of AlN Using BCl3/Cl2/Ar inductively coupled plasma. Mater Sci Eng, 2002, 95: 51 doi: 10.1016/S0921-5107(02)00160-5
[44]
Shah A P, Rahman A A, Bhattacharya A. ICP-RIE etching of polar, semi-polar and non-polar AlN: comparison of Cl2/Ar and Cl2/BCl3/Ar plasma chemistry and surface pretreatment. Semicond Sci Technol, 2014, 30(1): 015021 http://cn.bing.com/academic/profile?id=1970214025&encoded=0&v=paper_preview&mkt=zh-cn
[45]
Liu X, Sun C, Xiong B, et al. Smooth etching of epitaxially grown AlN film by Cl2/BCl3/Ar-based inductively coupled plasma. Vacuum, 2015, 116: 158 doi: 10.1016/j.vacuum.2015.03.030
[46]
Yang J, Si C, Han G, et al. Researching the aluminum nitride etching process for application in MEMS resonators. Micromachines, 2015, 6(2): 281 doi: 10.3390/mi6020281
[47]
Bliznetsov V, Johari B H B, Chentir M T, et al. Improving aluminum nitride plasma etch process for MEMS applications. J Micromechan Microeng, 2013, 23(11): 117001 doi: 10.1088/0960-1317/23/11/117001
[48]
Smith S, Wolden C, Bremser M, et al. High rate and selective etching of GaN, AlGaN, and AlN using an inductively coupled plasma. Appl Phys Lett, 1997, 71(25): 3631 doi: 10.1063/1.120463
[49]
Shul R, Willison C, Bridges M, et al. Selective inductively coupled plasma etching of group-Ⅲ nitrides in Cl2-and BCl3-based plasmas. J Vac Sci Technol A, 1998, 16(3): 1621 doi: 10.1116/1.581130
[50]
Hahn Y, Hays D, Donovan S, et al. Effect of additive noble gases in chlorine-based inductively coupled plasma etching of GaN, InN, and AlN. J Vac Sci Technol A, 1999, 17(3): 768 doi: 10.1116/1.581647
[51]
Dictus D, Shamiryan D, Paraschiv V, et al. Influence of crystallographic orientation on dry etch properties of TiN. J Vac Sci Technol B, 2006, 24(5): 2472 doi: 10.1116/1.2348725
[52]
Yang J, Han G W, Si C W, et al. Research status of aluminum nitride contour-mode resonators. Micronanoelectron Technol, 2014, 51(6): 374 http://en.cnki.com.cn/Article_en/CJFDTotal-BDTQ201406005.htm
[53]
Bin Z, Yang G, Yi H, et al. Analysis of the FBAR temperaturefrequency drift characteristics. Piezoelectics & Acoustooptics, 2014, 36(2): 171 http://en.cnki.com.cn/Article_en/CJFDTotal-YDSG201402005.htm
[54]
Rinaldi M, Tazzoli A, Segovia-Fernandez J, et al. High power and low temperature coefficient of frequency oscillator based on a fully anchored and oxide compensated AlN contour-mode MEMS resonator. Proceedings of the Micro Electro Mechanical Systems (MEMS), 2012 IEEE 25th International Conference on, 2012
[55]
Tazzoli A, Rinaldi M, Piazza G. Ovenized high frequency oscillators based on aluminum nitride contour-mode MEMS resonators. Proceedings of the Electron Devices Meeting, 1988 IEDM '88 Technical Digest, International, 2011
[56]
Tazzoli A, Kuo N K, Rinaldi M, et al. A 586 MHz microcontroller compensated MEMS oscillator based on ovenized aluminum nitride contour-mode resonators. 2012 IEEE International Ultrasonics Symposium (IUS), 2012: 1055 http://cn.bing.com/academic/profile?id=2086702214&encoded=0&v=paper_preview&mkt=zh-cn
[57]
Rinaldi M, Yu H, Zuniga C, et al. High frequency AlN MEMS resonators with integrated nano hot plate for temperature controlled operation. Proceedings of the Frequency Control Symposium (FCS), 2012 IEEE International, 2012
[58]
Wu X, Zuo C, Zhang M, et al. A 47 μm 204 MHz AlN contourmode mems based tunable oscillator in 65 nm CMOS. Proceedings of the Circuits and Systems (ISCAS), 2013 IEEE International Symposium on, 2013
[59]
Candler R N, Li H, Lutz M, et al. Investigation of energy loss mechanisms in micromechanical resonators. Proceedings of the Transducers, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, 2003
[60]
Thalhammer R, Aigner R. Energy loss mechanisms in SMR-type BAW devices. Proceedings of the Microwave Symposium Digest, 2005 IEEE MTT-S International, 2005
[61]
Segovia-Fernandez J, Cremonesi M, Cassella C, et al. Experimental study on the impact of anchor losses on the quality factor of contour mode AlN resonators. Proceedings of the Solid- State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVⅡ), 2013 Transducers & Eurosensors XXVⅡ: The 17th International Conference on, 2013
[62]
Segovia-Fernandez J, Piazza G. Analytical and numerical methods to model anchor losses in 65-MHz AlN contour mode resonators. J Microelectromechan Syst, 2016, 25: 459 doi: 10.1109/JMEMS.2016.2539224
[63]
Cassella C, Segovia-Fernandez J, Piazza G, et al. Reduction of anchor losses by etched slots in aluminum nitride contour mode resonators. Proceedings of the European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), 2013
[64]
Zhu H, Lee J E Y. Design of phononic crystal tethers for frequency-selective quality factor enhancement in AlN piezoelectric-on-silicon resonators. Procedia Engineering, 2015, 120: 516 doi: 10.1016/j.proeng.2015.08.689
[65]
Zhu H, Lee J E Y. AlN piezoelectric on silicon mems resonator with boosted Q using planar patterned phononic crystals on anchors. Proceedings of the Micro Electro Mechanical Systems (MEMS), 2015 28th IEEE International Conference on, 2015
[66]
Imtiaz A M, Khan F H, Walling J S. Fabrication, characterization and efficiency analysis of a piezoelectric (AlN) ring microresonator on Si for low-power resonant converters. Proceedings of the Industrial Electronics Society, IECON 2014-40th Annual Conference of the IEEE, 2014
[67]
Gibson B, Qalandar K, Turner K, et al. Analysis of the impact of release area on the quality factor of contour-mode resonators by laser doppler vibrometry. Proceedings of the 2015 Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum, 2015
[68]
Cassella C, Singh N, Soon B W, et al. Quality factor dependence on the inactive regions in AlN contour-mode resonators. J Microelectromechan Syst, 2015, 24(5): 1575 doi: 10.1109/JMEMS.2015.2423663
[69]
Cremonesi M, Frangi A, Cassella C, et al. Enhancement of the quality factor of AlN contour mode resonators by acoustic reflection: numerical design and experimental investigation. Procedia Engineering, 2014, 87: 468 doi: 10.1016/j.proeng.2014.11.390
Fig. 1.  (Color online) Schematic of the working principle of the AlN MEMS CMR

Fig. 2.  (Color online) Schematic of the one-port rectangular plate and ring-shaped AlN contour-mode resonator[16]. (a) Rectangle plate structure. (b) Ring-shaped structure.

Fig. 3.  (Color online) Schematic of the structure of the TFE and LFE AlN CMR. (a) The structure of the one-port TFE CMR[21]. (b) The structure of the one-port LFE CMR[22].

Fig. 4.  (Color online) Schematic of temperature compensation by adding the SiO2 layer[54].

Fig. 5.  (Color online) Schematic of different measures of temperature compensation by heating the device[34-36]. (a) Bottomserpentine electrode acts as the heating device[55]. (b) Set up heating device around top electrodes[56]. (c) Heat through hanging a hot plate[57].

Fig. 6.  Schematic of improving Q by decreasing anchor loss[39-41]. (a) Etch slots on the anchors[63]. (b) Set up 1D-PnCs or 2D-PnCs on the anchors[64, 65].

Fig. 7.  Schematic of the released area and its effect on the Q value[67].

Table 1.   Influence of textured metals on the AlN film.

Table 2.   Influence of the interlayer and surface roughness of the substrate ((002) Ti) on the AlN film.

Table 3.   Summary of the ICP etching characteristics of etching AlN[43-50].

[1]
Jing W, Ren Z, Nguyen C T C. 1.156-GHz self-aligned vibrating micromechanical disk resonator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51(12): 1607 doi: 10.1109/TUFFC.2004.1386679
[2]
Pourkamali S, Hashimura A, Abdolvand R, et al. High-Q single crystal silicon harpss capacitive beam resonators with selfaligned sub-100-nm transduction gaps. J Microelectromechan Syst, 2003, 12(4): 487 doi: 10.1109/JMEMS.2003.811726
[3]
Hung L W, Nguyen C T C. Capacitive-piezoelectric AlN resonators with Q > 12000. IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS), 2011: 173 http://cn.bing.com/academic/profile?id=2165998200&encoded=0&v=paper_preview&mkt=zh-cn
[4]
Lee J E Y, Seshia A A. 5.4-MHz single-crystal silicon wine glass mode disk resonator with quality factor of 2 million. Sensors and Actuators A, 2009, 156(1): 28 doi: 10.1016/j.sna.2009.02.007
[5]
Liu Bo, Chen Xiao, Cai Hualin, et al. Surface acoustic wave devices for sensor applications. Journal of Semiconductors, 2016, 37(2): 021001 doi: 10.1088/1674-4926/37/2/021001
[6]
Shu L, Jiang J, Peng B, et al. AlN film SAW resonator integrated with metal structure. Electron Lett, 2015, 51(5): 379 doi: 10.1049/el.2014.3495
[7]
Stratton F P, Chang D T, Kirby D J, et al. A MEMS-based quartz resonator technology for GHz applications. 2004 Proceedings of the 2004 IEEE International Proceedings of the Frequency Control Symposium and Exposition, 2004
[8]
Mueller W. A brief overview of FBAR technology. Agilent Technologies, 2001
[9]
Loebl H P, Klee M, Metzmacher C, et al. Piezoelectric thin AlN films for bulk acoustic wave (BAW) resonators. Materials Chemistry and Physics, 2003, 79(2/3): 143 http://cn.bing.com/academic/profile?id=1987528942&encoded=0&v=paper_preview&mkt=zh-cn
[10]
Penunuri D, Lakin K M. RF filter design using LTCC and thin film BAW technology. 2001 IEEE Proceedings of the Ultrasonics Symposium, 2001
[11]
Lobl H P, Klee M, Milsom R, et al. Materials for bulk acoustic wave (BAW) resonators and filters. Journal of the European Ceramic Society, 2001, 21(15): 2633 doi: 10.1016/S0955-2219(01)00329-6
[12]
Yong W. The structural analysis and simulation of the thin film bulk acoustic resonator. University of Electronic Science and Technology of China, 2007
[13]
Kumar Y, Rangra K, Agarwal R. Design and simulation of FBAR with different electrodes material configuration. International Journal of Engineering Trends and Technology, 2015, 28(6): 294 doi: 10.14445/22315381/IJETT-V28P256
[14]
Piazza G, Stephanou P J, Pisano A P. AlN contour-mode vibrating RF MEMS for next generation wireless communications. 2006 Proceeding of the 36th European Proceedings of the Solid-State Device Research Conference, 2006
[15]
Rinaldi M, Zuo C, Spiegel J V D, et al. Reconfigurable CMOS oscillator based on multifrequency AlN contour-mode MEMS resonators. IEEE Trans Electron Devices, 2011, 58(5): 1281 doi: 10.1109/TED.2011.2104961
[16]
Piazza G, Stephanou P J, Pisano A P. Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators. Microelectromechan Syst, 2006, 15(6): 13 http://cn.bing.com/academic/profile?id=2100506356&encoded=0&v=paper_preview&mkt=zh-cn
[17]
Johnson R A. Mechanical filters in electronics. Wiley, 1983
[18]
Piazza G, Stephanou P J, Porter J M, et al. Low motional resistance ring-shaped contour-mode aluminum nitride piezoelectric micromechanical resonators for UHF applications. 2005 18th IEEE International Conference on Proceedings of the Micro Electro Mechanical Systems, 2005
[19]
Imtiaz A, Khan F, Walling J. Contour-mode ring-shaped AlN microresonator on Si and feasibility of its application in seriesresonant converter. IEEE Trans Power Electron, 2014, 30(8): 4437
[20]
Rinaldi M, Zuniga C, Zuo C, et al. Super-high-frequency twoport AlN contour-mode resonators for RF applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(1): 38 doi: 10.1109/TUFFC.2010.1376
[21]
Zuo C, Spiegel J V D, Piazza G. 1.5-GHz CMOS voltagecontrolled oscillator based on thickness-field-excited piezoelectric AlN contour-mode MEMS resonators. 2010 IEEE Proceedings of the Custom Integrated Circuits Conference (CICC), 2010
[22]
Zuo C, Spiegel J V D, Piazza G. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour-mode MEMS resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(1): 82 doi: 10.1109/TUFFC.1382
[23]
Nancy S, Usama Z, Gianluca P. Residual noise reduction in AlN resonators by prolonged RF excitation. Proceedings of the 2014 IEEE International Frequency Control Symposium (FCS), 2014
[24]
Lu R, Gao A, Gong S. Parametric excitation in geometrically optimized AlN contour mode resonators. Proceedings of the 2015 Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum, 2015
[25]
Cassella C, Segovia-Fernandez J, Piazza G. Segmented electrode excitation of aluminum nitride contour mode resonators to optimize the device figure of merit. Proceedings of the Solid- State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVⅡ), 2013 Transducers & Eurosensors XXVⅡ: The 17th International Conference on, F 16-20 June 2013, 2013
[26]
Naik R S, Lutsky J J, Reif R, et al. Measurements of the bulk, c-axis electromechanical coupling constant as a function of AlN film quality. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, 47(1): 292 doi: 10.1109/58.818773
[27]
Shang Zhengguo, Li Dongling, Wen Zhiyu, et al. The fabrication of vibration energy harvester arrays based on AlN piezoelectric film. Journal of Semiconductors, 2013, 34(11): 114013 doi: 10.1088/1674-4926/34/11/114013
[28]
Iriarte G F, Rodrguez J G, Calle F. Synthesis of c-axis oriented AlN thin films on different substrates: a review. Materials Research Bulletin, 2010, 45(9): 1039 doi: 10.1016/j.materresbull.2010.05.035
[29]
Clement M, Olivares J, Capilla J, et al. Influence of crystal quality on the excitation and propagation of surface and bulk acoustic waves in polycrystalline AlN films. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(1): 128 doi: 10.1109/TUFFC.2012.2163
[30]
Felmetsger V V, Mikhov M K, Laptev P N. Effect of predeposition rf plasma etching on wafer surface morphology and crystal orientation of piezoelectric AlN thin films. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62(2): 387 doi: 10.1109/TUFFC.2014.006742
[31]
Xiong J, Gu H S, Hu K, et al. Influence of substrate metals on the crystal growth of AlN films. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(1): 98 doi: 10.1007/s12613-010-0117-y
[32]
Ababneh A, Alsumady M, Seidel H, et al. C-axis orientation and piezoelectric coefficients of AlN thin films sputter-deposited on titanium bottom electrodes. Appl Surf Sci, 2012, 259: 59 doi: 10.1016/j.apsusc.2012.06.086
[33]
Felmetsger V V, Mikhov M K. Deposition of smooth and highly (111) textured al bottom electrodes for AlN-based electroacoustic devices. Proceedings of the 2012 IEEE International Frequency Control Symposium, 2012
[34]
Felmetsger V V, Laptev P N, Tanner S M. Crystal orientation and stress in ac reactively sputtered AlN films on Mo electrodes for electro-acoustic devices. Proceedings of the 2008 IEEE Ultrasonics Symposium, 2008
[35]
Sharma J, Fernando S, Deng W, et al. Molybdenum etching using an SF6, BCl3 and Ar based recipe for high aspect ratio MEMS device fabrication. J Micromechan Microeng, 2013, 23(7): 075025 doi: 10.1088/0960-1317/23/7/075025
[36]
Kamohara T, Akiyama M, Ueno N, et al. Local epitaxial growth of aluminum nitride and molybdenum thin films in fiber textureusing aluminum nitride interlayer. Appl Phys Lett, 2006, 89(7): 071919 doi: 10.1063/1.2337558
[37]
Kamohara T, Akiyama M, Ueno N, et al. Influence of aluminum nitride interlayers on crystal orientation and piezoelectric property of aluminum nitride thin films prepared on titanium electrodes. Thin Solid Films, 2007, 515(11): 4565 doi: 10.1016/j.tsf.2006.11.032
[38]
Iriarte G F, Bjurstrom J, Westlinder J, et al. Synthesis of c-axisoriented AlN thin films on high-conducting layers: Al, Mo, Ti, TiN, and Ni. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(7): 1170 doi: 10.1109/TUFFC.2005.1504003
[39]
Barth S, Bartzsch H, Gloess D, et al. Sputter deposition of stresscontrolled piezoelectric AlN and AlScN films for ultrasonic and energy harvesting applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(8): 1329 doi: 10.1109/TUFFC.2014.3040
[40]
Ababneh A, Schmid U, Hernando J, et al. The influence of sputter deposition parameters on piezoelectric and mechanical properties of AlN thin films. Mater Sci Eng B, 2010, 172(3): 253 doi: 10.1016/j.mseb.2010.05.026
[41]
Wang J, Zhang Q, Yang G, et al. Effect of substrate temperature and bias voltage on the properties in DC magnetron sputtered AlN films on glass substrates. Journal of Materials Science: Materials in Electronics, 2016, 27(3): 1 http://cn.bing.com/academic/profile?id=2286135899&encoded=0&v=paper_preview&mkt=zh-cn
[42]
Aït Aïssa K, Elmazria O, Boulet P, et al. Investigations of AlN thin film crystalline properties in a wide temperature range by in situ X-ray diffraction measurements: correlation with AlN/sapphire-based SAW structure performance. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62(7): 1397 doi: 10.1109/TUFFC.2014.006868
[43]
Khan F A, Zhou L, Kumar V, et al. High rate etching of AlN Using BCl3/Cl2/Ar inductively coupled plasma. Mater Sci Eng, 2002, 95: 51 doi: 10.1016/S0921-5107(02)00160-5
[44]
Shah A P, Rahman A A, Bhattacharya A. ICP-RIE etching of polar, semi-polar and non-polar AlN: comparison of Cl2/Ar and Cl2/BCl3/Ar plasma chemistry and surface pretreatment. Semicond Sci Technol, 2014, 30(1): 015021 http://cn.bing.com/academic/profile?id=1970214025&encoded=0&v=paper_preview&mkt=zh-cn
[45]
Liu X, Sun C, Xiong B, et al. Smooth etching of epitaxially grown AlN film by Cl2/BCl3/Ar-based inductively coupled plasma. Vacuum, 2015, 116: 158 doi: 10.1016/j.vacuum.2015.03.030
[46]
Yang J, Si C, Han G, et al. Researching the aluminum nitride etching process for application in MEMS resonators. Micromachines, 2015, 6(2): 281 doi: 10.3390/mi6020281
[47]
Bliznetsov V, Johari B H B, Chentir M T, et al. Improving aluminum nitride plasma etch process for MEMS applications. J Micromechan Microeng, 2013, 23(11): 117001 doi: 10.1088/0960-1317/23/11/117001
[48]
Smith S, Wolden C, Bremser M, et al. High rate and selective etching of GaN, AlGaN, and AlN using an inductively coupled plasma. Appl Phys Lett, 1997, 71(25): 3631 doi: 10.1063/1.120463
[49]
Shul R, Willison C, Bridges M, et al. Selective inductively coupled plasma etching of group-Ⅲ nitrides in Cl2-and BCl3-based plasmas. J Vac Sci Technol A, 1998, 16(3): 1621 doi: 10.1116/1.581130
[50]
Hahn Y, Hays D, Donovan S, et al. Effect of additive noble gases in chlorine-based inductively coupled plasma etching of GaN, InN, and AlN. J Vac Sci Technol A, 1999, 17(3): 768 doi: 10.1116/1.581647
[51]
Dictus D, Shamiryan D, Paraschiv V, et al. Influence of crystallographic orientation on dry etch properties of TiN. J Vac Sci Technol B, 2006, 24(5): 2472 doi: 10.1116/1.2348725
[52]
Yang J, Han G W, Si C W, et al. Research status of aluminum nitride contour-mode resonators. Micronanoelectron Technol, 2014, 51(6): 374 http://en.cnki.com.cn/Article_en/CJFDTotal-BDTQ201406005.htm
[53]
Bin Z, Yang G, Yi H, et al. Analysis of the FBAR temperaturefrequency drift characteristics. Piezoelectics & Acoustooptics, 2014, 36(2): 171 http://en.cnki.com.cn/Article_en/CJFDTotal-YDSG201402005.htm
[54]
Rinaldi M, Tazzoli A, Segovia-Fernandez J, et al. High power and low temperature coefficient of frequency oscillator based on a fully anchored and oxide compensated AlN contour-mode MEMS resonator. Proceedings of the Micro Electro Mechanical Systems (MEMS), 2012 IEEE 25th International Conference on, 2012
[55]
Tazzoli A, Rinaldi M, Piazza G. Ovenized high frequency oscillators based on aluminum nitride contour-mode MEMS resonators. Proceedings of the Electron Devices Meeting, 1988 IEDM '88 Technical Digest, International, 2011
[56]
Tazzoli A, Kuo N K, Rinaldi M, et al. A 586 MHz microcontroller compensated MEMS oscillator based on ovenized aluminum nitride contour-mode resonators. 2012 IEEE International Ultrasonics Symposium (IUS), 2012: 1055 http://cn.bing.com/academic/profile?id=2086702214&encoded=0&v=paper_preview&mkt=zh-cn
[57]
Rinaldi M, Yu H, Zuniga C, et al. High frequency AlN MEMS resonators with integrated nano hot plate for temperature controlled operation. Proceedings of the Frequency Control Symposium (FCS), 2012 IEEE International, 2012
[58]
Wu X, Zuo C, Zhang M, et al. A 47 μm 204 MHz AlN contourmode mems based tunable oscillator in 65 nm CMOS. Proceedings of the Circuits and Systems (ISCAS), 2013 IEEE International Symposium on, 2013
[59]
Candler R N, Li H, Lutz M, et al. Investigation of energy loss mechanisms in micromechanical resonators. Proceedings of the Transducers, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, 2003
[60]
Thalhammer R, Aigner R. Energy loss mechanisms in SMR-type BAW devices. Proceedings of the Microwave Symposium Digest, 2005 IEEE MTT-S International, 2005
[61]
Segovia-Fernandez J, Cremonesi M, Cassella C, et al. Experimental study on the impact of anchor losses on the quality factor of contour mode AlN resonators. Proceedings of the Solid- State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVⅡ), 2013 Transducers & Eurosensors XXVⅡ: The 17th International Conference on, 2013
[62]
Segovia-Fernandez J, Piazza G. Analytical and numerical methods to model anchor losses in 65-MHz AlN contour mode resonators. J Microelectromechan Syst, 2016, 25: 459 doi: 10.1109/JMEMS.2016.2539224
[63]
Cassella C, Segovia-Fernandez J, Piazza G, et al. Reduction of anchor losses by etched slots in aluminum nitride contour mode resonators. Proceedings of the European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), 2013
[64]
Zhu H, Lee J E Y. Design of phononic crystal tethers for frequency-selective quality factor enhancement in AlN piezoelectric-on-silicon resonators. Procedia Engineering, 2015, 120: 516 doi: 10.1016/j.proeng.2015.08.689
[65]
Zhu H, Lee J E Y. AlN piezoelectric on silicon mems resonator with boosted Q using planar patterned phononic crystals on anchors. Proceedings of the Micro Electro Mechanical Systems (MEMS), 2015 28th IEEE International Conference on, 2015
[66]
Imtiaz A M, Khan F H, Walling J S. Fabrication, characterization and efficiency analysis of a piezoelectric (AlN) ring microresonator on Si for low-power resonant converters. Proceedings of the Industrial Electronics Society, IECON 2014-40th Annual Conference of the IEEE, 2014
[67]
Gibson B, Qalandar K, Turner K, et al. Analysis of the impact of release area on the quality factor of contour-mode resonators by laser doppler vibrometry. Proceedings of the 2015 Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum, 2015
[68]
Cassella C, Singh N, Soon B W, et al. Quality factor dependence on the inactive regions in AlN contour-mode resonators. J Microelectromechan Syst, 2015, 24(5): 1575 doi: 10.1109/JMEMS.2015.2423663
[69]
Cremonesi M, Frangi A, Cassella C, et al. Enhancement of the quality factor of AlN contour mode resonators by acoustic reflection: numerical design and experimental investigation. Procedia Engineering, 2014, 87: 468 doi: 10.1016/j.proeng.2014.11.390
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4648 Times PDF downloads: 152 Times Cited by: 0 Times

    History

    Received: 20 June 2013 Revised: 03 August 2016 Online: Published: 01 October 2016

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yunhong Hou, Meng Zhang, Guowei Han, Chaowei Si, Yongmei Zhao, Jin Ning. A review:aluminum nitride MEMS contour-mode resonator[J]. Journal of Semiconductors, 2016, 37(10): 101001. doi: 10.1088/1674-4926/37/10/101001 Y H Hou, M Zhang, G W Han, C W Si, Y M Zhao, J Ning. A review:aluminum nitride MEMS contour-mode resonator[J]. J. Semicond., 2016, 37(10): 101001. doi: 10.1088/1674-4926/37/10/101001.Export: BibTex EndNote
      Citation:
      Yunhong Hou, Meng Zhang, Guowei Han, Chaowei Si, Yongmei Zhao, Jin Ning. A review:aluminum nitride MEMS contour-mode resonator[J]. Journal of Semiconductors, 2016, 37(10): 101001. doi: 10.1088/1674-4926/37/10/101001

      Y H Hou, M Zhang, G W Han, C W Si, Y M Zhao, J Ning. A review:aluminum nitride MEMS contour-mode resonator[J]. J. Semicond., 2016, 37(10): 101001. doi: 10.1088/1674-4926/37/10/101001.
      Export: BibTex EndNote

      A review:aluminum nitride MEMS contour-mode resonator

      doi: 10.1088/1674-4926/37/10/101001
      Funds:

      Nurturing and Development Special Projects of Beijing Science and Technology Innovation Base’s Financial Support Z131103002813070

      National Natural Science Foundation 61234007

      National Natural Science Foundation 61504130

      Project supported by National Natural Science Foundation (Nos. 61274001, 61234007, 61504130) and the Nurturing and Development Special Projects of Beijing Science and Technology Innovation Base’s Financial Support (No. Z131103002813070)

      National Natural Science Foundation 61274001

      More Information
      • Corresponding author: Ning Jin, Email: ningjin@semi.ac.cn
      • Received Date: 2013-06-20
      • Revised Date: 2016-08-03
      • Published Date: 2016-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return