SEMICONDUCTOR MATERIALS

Optical and electrical properties of copper-incorporated ZnS films applicable as solar cell absorbers

M. Mehrabian1, , Z. Esteki2, H. Shokrvash2 and G. Kavei3

+ Author Affiliations

 Corresponding author: M. Mehrabian, Email: masood.mehrabian@yahoo.com

PDF

Abstract: Un-doped and Cu-doped ZnS (ZnS:Cu) thin films were synthesized by Successive Ion Layer Absorption and Reaction (SILAR) method. The UV-visible absorption studies have been used to calculate the band gap values of the fabricated ZnS:Cu thin films. It was observed that by increasing the concentration of Cu2+ ions, the Fermi level moves toward the edge of the valence band of ZnS. Photoluminescence spectra of un-doped and Cu-doped ZnS thin films was recorded under 355 nm. The emission spectrum of samples has a blue emission band at 436 nm. The peak positions of the luminescence showed a red shift as the Cu2+ ion concentration was increased, which indicates that the acceptor level (of Cu2+) is getting close to the valence band of ZnS.

Key words: ZnSCu2+ doped ZnSUV-visible absorptionphotoluminescence



[1]
Jindal Z, Verma N K. Effect of UV radiation on the photoluminescent properties of Cu-doped ZnS nanoparticles. Optoelectronics and Advanced Materials- Rapid Communications, 2008, 2(3): 166
[2]
Wanjari L, Bisen D P, Brahme N, et al. Thermoluminescence characteristics of ZnS:Cu nanoposphors. J Optoelectron Biomed Mater, 2015, 7(3): 59 http://www.chalcogen.ro/59_Wanjari.pdf
[3]
Linares P G, Marti A, Antolın E, et al. Voltage recovery in intermediate band solar cells. Solar Energy Materials & Solar Cells, 2012, 98: 240 http://cn.bing.com/academic/profile?id=2146240641&encoded=0&v=paper_preview&mkt=zh-cn
[4]
Puksec J D. Recombination processes and holes and electrons lifetimes. Automatika, 2002, 43: 1
[5]
Chen Jinhuo, Li Wenjian. Significant improvement of ZnS film electrical and optical performance by indium incorporation. Journal of Semiconductors, 2014, 35(9): 093003 doi: 10.1088/1674-4926/35/9/093003
[6]
Prabu H J, Johnson I, Greener C. Chemical synthesis and characterization of Mg doped ZnS nanoparticles and their engineering band gap performance. J Engineering Research and Applications, 2015, 5(8): 99 http://www.ijera.com/papers/Vol5_issue8/Part%20-%204/M580499105.pdf
[7]
Srivastava R K, Pandey N, Mishra S. Effect of Cu concentration on the photoconductivity properties of ZnS nanoparticles synthesized by co-precipitation method. Materials Science in Semiconductor Processing, 2013, 16: 1659 doi: 10.1016/j.mssp.2013.06.009
[8]
Joseph B, Manoj P K, Vaidyah V K. Studies on the structural, electrical and optical properties of Al-doped ZnO thin films prepared by chemical spray deposition. J Ceramics International, 2006, 32(5): 487 doi: 10.1016/j.ceramint.2005.03.029
[9]
Hasanzadeh J, Taherkhani A, Ghorbani M. Luminescence and structural properties of ZnS:Cu nanocrystals prepared using a wet chemical technique. Chinese Journal of Physics, 2013, 51(3): 540 http://cn.bing.com/academic/profile?id=2185201046&encoded=0&v=paper_preview&mkt=zh-cn
[10]
Long B, Cheng S, Zhou H, et al. The optical and electrical characteristics of ZnS:In thin films prepared by chemical bath deposition method. ECS Solid State Lett, 2014, 3(11): 140 doi: 10.1149/2.0041411ssl
[11]
Yamamoto T. Co-doping method for solutions of doping problems in wide-band-gap semiconductors. Phys Stat Sol A, 2002, 193(3): 423 doi: 10.1002/(ISSN)1521-396X
[12]
Li Wenjian, Chen Jinhuo, Chen Shuying. Substrate temperature effects on the structural and photoelectric properties of ZnS:In films. Journal of Semiconductors, 2014, 35(2): 023001 doi: 10.1088/1674-4926/35/2/023001
[13]
Bol A A, Ferwerda J, Bergwerf J A, et al. Luminescence of nanocrystalline ZnS:Cu2+. J Lumin, 2002, 99: 325 doi: 10.1016/S0022-2313(02)00350-2
[14]
Benyahia K, Benhaya A, Aida M S. ZnS thin films deposition by thermal evaporation for photovoltaic applications. Journal of Semiconductors, 2015, 36(10): 103001 doi: 10.1088/1674-4926/36/10/103001
Fig. 1.  Left: Generation and recombination processes in semiconductors, (a) excitation, (b) band-band emission, (c) recombination of a free electron with a trapped hole, (d) recombination of a trapped electron with a free hole, and (e) donor-acceptor pair emission. Right: Band diagram of an IB structure showing the VB, IB and CB along with three separate quasi Fermi levels. Photons of energies above each of the sub-band gaps (Eg, EH and EL) pump electrons through each of the three possible transitions.

Fig. 2.  (Color online) Photograph of prepared anionic and cationic solutions with different copper concentrations.

Fig. 3.  FESEM images of (a) un-doped ZnS, (b) 0.5% Cu-doped ZnS, (c) 1% Cu-doped ZnS, (d) 2% Cu-doped ZnS, (e) 5% Cu-doped ZnS, and (f) 10% Cu-doped ZnS nanoparticles. Scale bar: 500 nm.

Fig. 4.  (Color online) X-ray diffraction patterns of ZnS and ZnS:Cu (0.5%, 1%, 2%, 5% and 10%) nanocrystals.

Fig. 5.  UV-Vis spectra of (a) un-doped ZnS, (b) 0.5% Cu-doped ZnS, (c) 1% Cu-doped ZnS, (d) 2% Cu-doped ZnS, (e) 5% Cu-doped ZnS, and (f) 10% Cu-doped ZnS nanoparticles.

Fig. 6.  Schematic energy-level diagram of (a) introduced energy level position for un-doped and different concentration of Cu-doped ZnS nanoparticles, (b) the Fermi level moves toward the edge of VB with increasing the concentration of Cu2+ ions.

Fig. 7.  Resistivity of the ZnS thin films with Cu2+ concentrations (a) 0, (b) 0.5%, (c) 1%, (d) 2%, (e) 5%, and (f) 10%.

Fig. 8.  Photoluminescence spectra of the ZnS films having different concentrations of Cu2+ in the range of (a) 320-400 nm and (b) 380-630 nm.

Table 1.   Electrical resistivity variation with Cu concentration.

[1]
Jindal Z, Verma N K. Effect of UV radiation on the photoluminescent properties of Cu-doped ZnS nanoparticles. Optoelectronics and Advanced Materials- Rapid Communications, 2008, 2(3): 166
[2]
Wanjari L, Bisen D P, Brahme N, et al. Thermoluminescence characteristics of ZnS:Cu nanoposphors. J Optoelectron Biomed Mater, 2015, 7(3): 59 http://www.chalcogen.ro/59_Wanjari.pdf
[3]
Linares P G, Marti A, Antolın E, et al. Voltage recovery in intermediate band solar cells. Solar Energy Materials & Solar Cells, 2012, 98: 240 http://cn.bing.com/academic/profile?id=2146240641&encoded=0&v=paper_preview&mkt=zh-cn
[4]
Puksec J D. Recombination processes and holes and electrons lifetimes. Automatika, 2002, 43: 1
[5]
Chen Jinhuo, Li Wenjian. Significant improvement of ZnS film electrical and optical performance by indium incorporation. Journal of Semiconductors, 2014, 35(9): 093003 doi: 10.1088/1674-4926/35/9/093003
[6]
Prabu H J, Johnson I, Greener C. Chemical synthesis and characterization of Mg doped ZnS nanoparticles and their engineering band gap performance. J Engineering Research and Applications, 2015, 5(8): 99 http://www.ijera.com/papers/Vol5_issue8/Part%20-%204/M580499105.pdf
[7]
Srivastava R K, Pandey N, Mishra S. Effect of Cu concentration on the photoconductivity properties of ZnS nanoparticles synthesized by co-precipitation method. Materials Science in Semiconductor Processing, 2013, 16: 1659 doi: 10.1016/j.mssp.2013.06.009
[8]
Joseph B, Manoj P K, Vaidyah V K. Studies on the structural, electrical and optical properties of Al-doped ZnO thin films prepared by chemical spray deposition. J Ceramics International, 2006, 32(5): 487 doi: 10.1016/j.ceramint.2005.03.029
[9]
Hasanzadeh J, Taherkhani A, Ghorbani M. Luminescence and structural properties of ZnS:Cu nanocrystals prepared using a wet chemical technique. Chinese Journal of Physics, 2013, 51(3): 540 http://cn.bing.com/academic/profile?id=2185201046&encoded=0&v=paper_preview&mkt=zh-cn
[10]
Long B, Cheng S, Zhou H, et al. The optical and electrical characteristics of ZnS:In thin films prepared by chemical bath deposition method. ECS Solid State Lett, 2014, 3(11): 140 doi: 10.1149/2.0041411ssl
[11]
Yamamoto T. Co-doping method for solutions of doping problems in wide-band-gap semiconductors. Phys Stat Sol A, 2002, 193(3): 423 doi: 10.1002/(ISSN)1521-396X
[12]
Li Wenjian, Chen Jinhuo, Chen Shuying. Substrate temperature effects on the structural and photoelectric properties of ZnS:In films. Journal of Semiconductors, 2014, 35(2): 023001 doi: 10.1088/1674-4926/35/2/023001
[13]
Bol A A, Ferwerda J, Bergwerf J A, et al. Luminescence of nanocrystalline ZnS:Cu2+. J Lumin, 2002, 99: 325 doi: 10.1016/S0022-2313(02)00350-2
[14]
Benyahia K, Benhaya A, Aida M S. ZnS thin films deposition by thermal evaporation for photovoltaic applications. Journal of Semiconductors, 2015, 36(10): 103001 doi: 10.1088/1674-4926/36/10/103001
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2491 Times PDF downloads: 19 Times Cited by: 0 Times

    History

    Received: 15 March 2016 Revised: 09 May 2016 Online: Published: 01 October 2016

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      M. Mehrabian, Z. Esteki, H. Shokrvash, G. Kavei. Optical and electrical properties of copper-incorporated ZnS films applicable as solar cell absorbers[J]. Journal of Semiconductors, 2016, 37(10): 103002. doi: 10.1088/1674-4926/37/10/103002 M. Mehrabian, Z. Esteki, H. Shokrvash, G. Kavei. Optical and electrical properties of copper-incorporated ZnS films applicable as solar cell absorbers[J]. J. Semicond., 2016, 37(10): 103002. doi: 10.1088/1674-4926/37/10/103002.Export: BibTex EndNote
      Citation:
      M. Mehrabian, Z. Esteki, H. Shokrvash, G. Kavei. Optical and electrical properties of copper-incorporated ZnS films applicable as solar cell absorbers[J]. Journal of Semiconductors, 2016, 37(10): 103002. doi: 10.1088/1674-4926/37/10/103002

      M. Mehrabian, Z. Esteki, H. Shokrvash, G. Kavei. Optical and electrical properties of copper-incorporated ZnS films applicable as solar cell absorbers[J]. J. Semicond., 2016, 37(10): 103002. doi: 10.1088/1674-4926/37/10/103002.
      Export: BibTex EndNote

      Optical and electrical properties of copper-incorporated ZnS films applicable as solar cell absorbers

      doi: 10.1088/1674-4926/37/10/103002
      More Information
      • Corresponding author: M. Mehrabian, Email: masood.mehrabian@yahoo.com
      • Received Date: 2016-03-15
      • Revised Date: 2016-05-09
      • Published Date: 2016-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return