SEMICONDUCTOR MATERIALS

Persistent photoconductivity of amorphous Hg0.78Cd0.22Te: In films*

Lianjie Yu, Yuhui Su, Yanli Shi, Xiongjun Li, Weiyan Zhao, Qi Ma, Yunjian Tai and Peng Zhao

+ Author Affiliations

 Corresponding author: Shi Yanli, km@yahoo.com.cn

PDF

Abstract: The persistent photoconductivity (PPC) of amorphous Hg0.78Cd0.22Te: In films has been studied under illumination by super-bandgap light (a He-Ne laser, hν=1.96 eV, 30 mW/cm2) and sub-bandgap light (1000 K Blackbody source, the largest photon energies hνp=0.42 eV, 8.9 mW/cm2) in the range of 80-300 K. The persistent photoconductivity effect increases with increase in illumination intensity and illumination time. However, it decreases with increase in working temperature. The non-exponential decay of photoconductivity implies the presence of continuous distribution of defect states in amorphous Hg0.78Cd0.22Te: In films. These results indicate that the decay of photoconductivity is not governed by the carrier trapped in the intrinsic defects, but it may be due to light-induced defects under light illumination.

Key words: amorphous Hg0.78Cd0.22Tepersistent photoconductivitylight-induced effects



[1]
Mott N F, Davis E A. Electronic processes in non-crystalline materials. Oxford: Clarendon Press, 1979
[2]
Lecomber P G, Mort J. Electronic and structural properties of amorphous semiconductors. London, New York: Academic Press, 1973
[3]
Szatkowski J, Płaczek-Popko E, Fiałkowski J, et al. Cd0.8Mn0.2Te:(In/Al)-deep level transient spectroscopy. Physica B, 2000, 292: 114 doi: 10.1016/S0921-4526(00)00484-1
[4]
Szatkowski J, Płaczek-Popko E, Sierański K, et al. Persistent photoconductivity and DLTS in indium-doped Cd0.9Mn0.1Te. Physica B, 1999, 273/274: 879
[5]
Rivera-Alvarez Z, Hernández L, Becerril M, et al. DX centers and persistent photoconductivity in CdTe-In films. Solid State Commun, 2000, 113: 621 doi: 10.1016/S0038-1098(99)00545-1
[6]
PŁaczek-Popko E, Gumienny Z, Trzmiel J, et al. Evidence for metastable behavior of Ga-doped CdTe. Optica Applicata, 2008, 38(3): 559
[7]
Trzmiel J, PŁaczek-Popko E, Weron K, et al. Non-exponential photoionization of the DX centers in gallium doped CdTe and Cd0.99Mn0.01Te. ACTA Physica Polonica A, 2008, 114(5): 1417 doi: 10.12693/APhysPolA.114.1417
[8]
Trzmiel J, Placzek-Popko E, Nowak A, et al. On the stretchedexponential decay kinetics of the ionized DX centers in gallium doped Cd1-xMnxTe. Physica B, 2009, 404: 5251 doi: 10.1016/j.physb.2009.08.289
[9]
Iovu M S, Shutov S D, Toth L. Transient photocurrents under optical bias in time-of-flight experiment with amorphous films of As2Se3:Sn and As2S3:Sb2S3. Phys Stat Sol (b), 1996, 195: 149 doi: 10.1002/(ISSN)1521-3951
[10]
Harea D V, Vasilev I A, Colomeico E P, et al. Persistent photoconductivity in amorphous As2Se3 films with Sn impurity. J Optoelectron Adv Mater, 2003, 5(5): 1115 https://www.researchgate.net/publication/242075293_Persistent_photoconductivity_in_amorphous_As2Se3_films_with_Sn_impurity
[11]
Bouhdjar S F, Ayat L, Meftah A M, et al. Computer modelling and analysis of the photodegradation effect in a-Si:H p-i-n solar cell. Journal of Semiconductors, 2015, 36(1): 014002 doi: 10.1088/1674-4926/36/1/014002
[12]
Zhang Minglan, Yang Ruixia, Liu Naixin, et al. Persistent photoconductivity in neutron irradiated GaN. Journal of Semiconductors, 2013, 34(9): 093005 doi: 10.1088/1674-4926/34/9/093005
[13]
Pal R K, Agnihotri A K, Kumar A. Persistent photoconductivity in amorphous Se–Te–Zn system. Chalcogenide Letters, 2010, 7(6): 439
[14]
Singh S, Sharma R S, Shukla R K, et al. Photoconductivity in a-Se90Ge10-xInx thin films. Vacuum, 2004, 72: 1
[15]
Chadi D J, Park C H. Electronic properties of hydrogen-derived complexes in silicon. Phys Rev B, 1995, 52: 8877 doi: 10.1103/PhysRevB.52.8877
[16]
Thio T, Bennett J W, Chadi D J, et al. DX centers in II–VI semiconductors and heterojunctions. J Electron Mater, 1996, 25: 229 doi: 10.1007/BF02666249
[17]
Lin J Y, Jiang H X. Relaxation of stored charge carriers in a Zn0.3Cd0.7Se mixed crystal. Phys Rev B, 1990, 41: 5178 doi: 10.1103/PhysRevB.41.5178
[18]
Fuhs W, Meyer D. Recombination in amorphous arsenic triselenide. Phys Stat Sol (a), 1974, 24: 275 doi: 10.1002/(ISSN)1521-396X
[19]
Street R A, Mott N F. States in the gap in glassy semiconductors. Phys Rev Lett, 1975, 35: 1293 doi: 10.1103/PhysRevLett.35.1293
[20]
Kumeda M, Kawachi G, Shimizu T. Photoconductivity and photoluminescence and their relation to light-induced ESR in (Ge0:42S0:58/1-x(Sb0.4S0.6)x glasses. Philos Mag B, 1985, 51(6): 591 doi: 10.1080/13642818508243150
[21]
Shimakawa K, Yano Y, Katsuma Y. Origin of the non-exponential photocurrent decay in amorphous semiconductors. Philos Mag B, 1986, 54(4): 285 doi: 10.1080/13642818608239029
[22]
Dixit M, Dwivedi S K, Kumar A. Effect of photocrystallization on the photoconductivity of a-Se80Te20.Thin Solid Films, 1998, 333(1/2): 165
[23]
Lang D V, Logan R A, Jaros M. Trapping characteristics and a donor-complex (DX) model for the persistent-photoconductivity trapping center in Te-doped AlxGa1-xAs. Phys Rev B, 1979, 19: 1015 doi: 10.1103/PhysRevB.19.1015
[24]
Mooney P M. Deep donor levels (D X centers) in III–V semiconductors. J Appl Phys, 1990, 67: R1 doi: 10.1063/1.345628
[25]
Placzek-Popko E, Becla P. Metastable defect characterization in Cd0.9Mn0.1Te:In. Physica B, 2001, 308–310: 954 doi: 10.1016/S0921-4526(01)00886-9
[26]
Terry I, Penney T, Molnár S von, et al. Band tails and the insulator–metal transition in the persistent photoconductor Cd1-xMnxTe:In. Solid State Commun, 1992, 84(1/2): 235
[27]
Chadi D J, Chang K J. Theory of the atomic and electronic structure of DX centers in GaAs and AlxGa1-xAs alloys. Phys Rev Lett, 1988, 61(7): 873 doi: 10.1103/PhysRevLett.61.873
[28]
Park C H, Chadi D J. Pressure dependence of deep centers in II– VI semiconductors: theory. Journal of Physics and Chemistry of Solids, 1995, 56(3/4): 585
[29]
Wasik D, Przybytek J, Baj M, et al. Hydrostatic pressure study of indium DX-like centers in MBE-grown CdTe and CdMnTe layers. J Cryst Growth, 1996, 159(1–4): 392 doi: 10.1016/0022-0248(95)00688-5
[30]
Yu Lianjie, Shi Yanli, Li Xiongjun, et al. Effect of thermal annealing on the steady state photoconductivity of amorphous HgCdTe thin films. Journal of Optoelectronics·Laser, 2012, 23(4): 735
[31]
Yu Lianjie, Shi Yanli, He Wenjin, et al. Relationship between dark conductivity and temperature for amorphous HgCdTe films. Proc of SPIE, 2009, 7383: 73833N doi: 10.1117/12.836568
[32]
Yu Lianjie, Shi Yanli, Zhuang Jisheng, et al. The modulated photocurrent of amorphous HgCdTe thin films. Proc SPIE, 2011, 8193: 819341 doi: 10.1117/12.900987
[33]
Wang Guanghua, Kong Jincheng, Li Xiongjun, et al. Effect of power variation on microstructure and surface morphology of HgCdTe films deposited by RF magnetron sputtering. Journal of Semiconductors, 2010, 31(5): 053004 doi: 10.1088/1674-4926/31/5/053004
[34]
Kong Jincheng, Kong Lingde, Zhao Jun, et al. Structural and optical properties of amorphous MCT films deposited by RF magnetron sputtering. Journal of Semiconductors, 2008, 29(4): 733 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=07092005&flag=1
[35]
Li Xiongjun, Kong Jincheng, Wang Guanghua, et al. The effect of annealing on the microstructure and photosensitivity of amorphous HgCdTe films. Infrared Technology, 2010, 32(5): 255
[36]
Qiu Feng, Xiang Jinzhong, Kong Jincheng, et al. Dark conductivity and photoconductivity of amorphous Hg0.78Cd0.22Te thin films. Journal of Semiconductors, 2011, 32(3): 033004 doi: 10.1088/1674-4926/32/3/033004
[37]
Shimakawa K. Residual photocurrent decay in amorphous chalcogenides. J Non-Cryst Solids, 1985, 77/78: 1253 doi: 10.1016/0022-3093(85)90885-3
[38]
Mehra R M, Kaur G, Mathur P C. Effect of antimony impurity on photoconduction in thin films of Se–Te system. Solid State Commun, 1993, 85(1): 29 doi: 10.1016/0038-1098(93)90912-7
Fig. 1.  Photoconductivity relaxation in a-Hg$_{\mathrm{0.78}}$Cd$_{\mathrm{0.22}}$Te:In films for different illumination intensity at 80 K.

Fig. 2.  The photoconductivity relaxation in a-Hg$_{\mathrm{0.78}}$Cd$_{\mathrm{0.22}}$Te:In films for different illumination time under constant illumination intensity ($F=$ 30 mW/cm$^{\mathrm{2}})$ at 80 K.

Fig. 3.  The photoconductivity relaxation in a-Hg$_{\mathrm{0.78}}$Cd$_{\mathrm{0.22}}$Te:In films for different temperature under constant illumination intensity ($F=30$ mW/cm$^{{2}})$.

Fig. 4.  The $S_{\mathrm{p}}$ of a-Hg$_{\mathrm{0.78}}$Cd$_{\mathrm{0.22}}$Te:In films at different intensity ($t_{\mathrm{i}}=30$ min, $T=80$ K).

Fig. 5.  The $S_{\mathrm{p}}$ of a-Hg$_{\mathrm{0.78}}$Cd$_{\mathrm{0.22}}$Te:In films at different illumination times ($F=30$ mW/cm$^{{2}}$, $T=80$ K).

Fig. 6.  The $S_{\mathrm{p}}$ of a-Hg$_{\mathrm{0.78}}$Cd$_{\mathrm{0.22}}$Te:In films at different temperatures ($t_{\mathrm{i}}=$ 30 min, $t_{\mathrm{d}}=$ 30 min).

Fig. 7.  The decay exponent ($\beta)$ and decay time constant ($\tau_{\mathrm{d}})$ of photoconductivity in a-Hg$_{\mathrm{0.78}}$Cd$_{\mathrm{0.22}}$Te:In films at different temperature at $F=$ 30 mW/cm$^{\mathrm{2}}$ and $t_{\mathrm{i}}=30$ min.

Table 1.   The $\sigma_{\mathrm{p}}$(0), $\tau_{\mathrm{d}}$, $\beta $ and $\alpha $ in a-Hg$_{\mathrm{0.78}}$Cd$_{\mathrm{0.22}}$Te:In films at different illumination intensity at 80 K and $t_{\mathrm{i}}=$ 30 min.

Table 2.   The $\sigma_{\mathrm{p}}$(0), $\tau_{\mathrm{d}}$, $\beta $ and $\alpha $ in a-Hg$_{\mathrm{0.78}}$Cd$_{\mathrm{0.22}}$Te:In films at different illumination time at 80 K and $F=$ 30 mW/cm$^{\mathrm{2}}$.

Table 3.   The $\sigma_{\mathrm{p}}$(0), $\tau_{\mathrm{d}}$, $\beta $ and $\alpha $ in a-Hg$_{\mathrm{0.78}}$Cd$_{\mathrm{0.22}}$Te:In films at different temperature at $t_{\mathrm{i}}=30$ min and $F=30$ mW/cm$^{\mathrm{2}}$.

[1]
Mott N F, Davis E A. Electronic processes in non-crystalline materials. Oxford: Clarendon Press, 1979
[2]
Lecomber P G, Mort J. Electronic and structural properties of amorphous semiconductors. London, New York: Academic Press, 1973
[3]
Szatkowski J, Płaczek-Popko E, Fiałkowski J, et al. Cd0.8Mn0.2Te:(In/Al)-deep level transient spectroscopy. Physica B, 2000, 292: 114 doi: 10.1016/S0921-4526(00)00484-1
[4]
Szatkowski J, Płaczek-Popko E, Sierański K, et al. Persistent photoconductivity and DLTS in indium-doped Cd0.9Mn0.1Te. Physica B, 1999, 273/274: 879
[5]
Rivera-Alvarez Z, Hernández L, Becerril M, et al. DX centers and persistent photoconductivity in CdTe-In films. Solid State Commun, 2000, 113: 621 doi: 10.1016/S0038-1098(99)00545-1
[6]
PŁaczek-Popko E, Gumienny Z, Trzmiel J, et al. Evidence for metastable behavior of Ga-doped CdTe. Optica Applicata, 2008, 38(3): 559
[7]
Trzmiel J, PŁaczek-Popko E, Weron K, et al. Non-exponential photoionization of the DX centers in gallium doped CdTe and Cd0.99Mn0.01Te. ACTA Physica Polonica A, 2008, 114(5): 1417 doi: 10.12693/APhysPolA.114.1417
[8]
Trzmiel J, Placzek-Popko E, Nowak A, et al. On the stretchedexponential decay kinetics of the ionized DX centers in gallium doped Cd1-xMnxTe. Physica B, 2009, 404: 5251 doi: 10.1016/j.physb.2009.08.289
[9]
Iovu M S, Shutov S D, Toth L. Transient photocurrents under optical bias in time-of-flight experiment with amorphous films of As2Se3:Sn and As2S3:Sb2S3. Phys Stat Sol (b), 1996, 195: 149 doi: 10.1002/(ISSN)1521-3951
[10]
Harea D V, Vasilev I A, Colomeico E P, et al. Persistent photoconductivity in amorphous As2Se3 films with Sn impurity. J Optoelectron Adv Mater, 2003, 5(5): 1115 https://www.researchgate.net/publication/242075293_Persistent_photoconductivity_in_amorphous_As2Se3_films_with_Sn_impurity
[11]
Bouhdjar S F, Ayat L, Meftah A M, et al. Computer modelling and analysis of the photodegradation effect in a-Si:H p-i-n solar cell. Journal of Semiconductors, 2015, 36(1): 014002 doi: 10.1088/1674-4926/36/1/014002
[12]
Zhang Minglan, Yang Ruixia, Liu Naixin, et al. Persistent photoconductivity in neutron irradiated GaN. Journal of Semiconductors, 2013, 34(9): 093005 doi: 10.1088/1674-4926/34/9/093005
[13]
Pal R K, Agnihotri A K, Kumar A. Persistent photoconductivity in amorphous Se–Te–Zn system. Chalcogenide Letters, 2010, 7(6): 439
[14]
Singh S, Sharma R S, Shukla R K, et al. Photoconductivity in a-Se90Ge10-xInx thin films. Vacuum, 2004, 72: 1
[15]
Chadi D J, Park C H. Electronic properties of hydrogen-derived complexes in silicon. Phys Rev B, 1995, 52: 8877 doi: 10.1103/PhysRevB.52.8877
[16]
Thio T, Bennett J W, Chadi D J, et al. DX centers in II–VI semiconductors and heterojunctions. J Electron Mater, 1996, 25: 229 doi: 10.1007/BF02666249
[17]
Lin J Y, Jiang H X. Relaxation of stored charge carriers in a Zn0.3Cd0.7Se mixed crystal. Phys Rev B, 1990, 41: 5178 doi: 10.1103/PhysRevB.41.5178
[18]
Fuhs W, Meyer D. Recombination in amorphous arsenic triselenide. Phys Stat Sol (a), 1974, 24: 275 doi: 10.1002/(ISSN)1521-396X
[19]
Street R A, Mott N F. States in the gap in glassy semiconductors. Phys Rev Lett, 1975, 35: 1293 doi: 10.1103/PhysRevLett.35.1293
[20]
Kumeda M, Kawachi G, Shimizu T. Photoconductivity and photoluminescence and their relation to light-induced ESR in (Ge0:42S0:58/1-x(Sb0.4S0.6)x glasses. Philos Mag B, 1985, 51(6): 591 doi: 10.1080/13642818508243150
[21]
Shimakawa K, Yano Y, Katsuma Y. Origin of the non-exponential photocurrent decay in amorphous semiconductors. Philos Mag B, 1986, 54(4): 285 doi: 10.1080/13642818608239029
[22]
Dixit M, Dwivedi S K, Kumar A. Effect of photocrystallization on the photoconductivity of a-Se80Te20.Thin Solid Films, 1998, 333(1/2): 165
[23]
Lang D V, Logan R A, Jaros M. Trapping characteristics and a donor-complex (DX) model for the persistent-photoconductivity trapping center in Te-doped AlxGa1-xAs. Phys Rev B, 1979, 19: 1015 doi: 10.1103/PhysRevB.19.1015
[24]
Mooney P M. Deep donor levels (D X centers) in III–V semiconductors. J Appl Phys, 1990, 67: R1 doi: 10.1063/1.345628
[25]
Placzek-Popko E, Becla P. Metastable defect characterization in Cd0.9Mn0.1Te:In. Physica B, 2001, 308–310: 954 doi: 10.1016/S0921-4526(01)00886-9
[26]
Terry I, Penney T, Molnár S von, et al. Band tails and the insulator–metal transition in the persistent photoconductor Cd1-xMnxTe:In. Solid State Commun, 1992, 84(1/2): 235
[27]
Chadi D J, Chang K J. Theory of the atomic and electronic structure of DX centers in GaAs and AlxGa1-xAs alloys. Phys Rev Lett, 1988, 61(7): 873 doi: 10.1103/PhysRevLett.61.873
[28]
Park C H, Chadi D J. Pressure dependence of deep centers in II– VI semiconductors: theory. Journal of Physics and Chemistry of Solids, 1995, 56(3/4): 585
[29]
Wasik D, Przybytek J, Baj M, et al. Hydrostatic pressure study of indium DX-like centers in MBE-grown CdTe and CdMnTe layers. J Cryst Growth, 1996, 159(1–4): 392 doi: 10.1016/0022-0248(95)00688-5
[30]
Yu Lianjie, Shi Yanli, Li Xiongjun, et al. Effect of thermal annealing on the steady state photoconductivity of amorphous HgCdTe thin films. Journal of Optoelectronics·Laser, 2012, 23(4): 735
[31]
Yu Lianjie, Shi Yanli, He Wenjin, et al. Relationship between dark conductivity and temperature for amorphous HgCdTe films. Proc of SPIE, 2009, 7383: 73833N doi: 10.1117/12.836568
[32]
Yu Lianjie, Shi Yanli, Zhuang Jisheng, et al. The modulated photocurrent of amorphous HgCdTe thin films. Proc SPIE, 2011, 8193: 819341 doi: 10.1117/12.900987
[33]
Wang Guanghua, Kong Jincheng, Li Xiongjun, et al. Effect of power variation on microstructure and surface morphology of HgCdTe films deposited by RF magnetron sputtering. Journal of Semiconductors, 2010, 31(5): 053004 doi: 10.1088/1674-4926/31/5/053004
[34]
Kong Jincheng, Kong Lingde, Zhao Jun, et al. Structural and optical properties of amorphous MCT films deposited by RF magnetron sputtering. Journal of Semiconductors, 2008, 29(4): 733 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=07092005&flag=1
[35]
Li Xiongjun, Kong Jincheng, Wang Guanghua, et al. The effect of annealing on the microstructure and photosensitivity of amorphous HgCdTe films. Infrared Technology, 2010, 32(5): 255
[36]
Qiu Feng, Xiang Jinzhong, Kong Jincheng, et al. Dark conductivity and photoconductivity of amorphous Hg0.78Cd0.22Te thin films. Journal of Semiconductors, 2011, 32(3): 033004 doi: 10.1088/1674-4926/32/3/033004
[37]
Shimakawa K. Residual photocurrent decay in amorphous chalcogenides. J Non-Cryst Solids, 1985, 77/78: 1253 doi: 10.1016/0022-3093(85)90885-3
[38]
Mehra R M, Kaur G, Mathur P C. Effect of antimony impurity on photoconduction in thin films of Se–Te system. Solid State Commun, 1993, 85(1): 29 doi: 10.1016/0038-1098(93)90912-7
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3018 Times PDF downloads: 14 Times Cited by: 0 Times

    History

    Received: 04 May 2016 Revised: 12 June 2016 Online: Published: 01 October 2016

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Lianjie Yu, Yuhui Su, Yanli Shi, Xiongjun Li, Weiyan Zhao, Qi Ma, Yunjian Tai, Peng Zhao. Persistent photoconductivity of amorphous Hg0.78Cd0.22Te: In films*[J]. Journal of Semiconductors, 2016, 37(10): 103003. doi: 10.1088/1674-4926/37/10/103003 L J Yu, Y H Su, Y L Shi, X J Li, W Y Zhao, Q Ma, Y J Tai, P Zhao. Persistent photoconductivity of amorphous Hg0.78Cd0.22Te: In films*[J]. J. Semicond., 2016, 37(10): 103003. doi: 10.1088/1674-4926/37/10/103003.Export: BibTex EndNote
      Citation:
      Lianjie Yu, Yuhui Su, Yanli Shi, Xiongjun Li, Weiyan Zhao, Qi Ma, Yunjian Tai, Peng Zhao. Persistent photoconductivity of amorphous Hg0.78Cd0.22Te: In films*[J]. Journal of Semiconductors, 2016, 37(10): 103003. doi: 10.1088/1674-4926/37/10/103003

      L J Yu, Y H Su, Y L Shi, X J Li, W Y Zhao, Q Ma, Y J Tai, P Zhao. Persistent photoconductivity of amorphous Hg0.78Cd0.22Te: In films*[J]. J. Semicond., 2016, 37(10): 103003. doi: 10.1088/1674-4926/37/10/103003.
      Export: BibTex EndNote

      Persistent photoconductivity of amorphous Hg0.78Cd0.22Te: In films*

      doi: 10.1088/1674-4926/37/10/103003
      Funds:

      the Natural Science Foundation of Yunnan Province 2008CD176

      Project supported by the Natural Science Foundation of Yunnan Province (No.2008CD176)

      More Information
      • Corresponding author: Shi Yanli, km@yahoo.com.cn
      • Received Date: 2016-05-04
      • Revised Date: 2016-06-12
      • Published Date: 2016-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return