SEMICONDUCTOR DEVICES

High-performance enhancement-mode AlGaN/GaN MOS-HEMTs with fluorinated stack gate dielectrics and thin barrier layer

Tao Gao1, 2, Ruimin Xu1, Kai Zhang2, , Yuechan Kong2, Jianjun Zhou2, Cen Kong2, Xinxin Yu2, Xun Dong2 and Tangsheng Chen2

+ Author Affiliations

 Corresponding author: Kai Zhang, Email: haigui.34@163.com

PDF

Abstract: We present high-performance enhancement-mode AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistors (MOS-HEMTs) by a fluorinated gate dielectric technique. A nanolaminate of an Al2O3/LaxAl1-xO3/Al2O3 stack (x≈0.33) grown by atomic layer deposition is employed to avoid fluorine ions implantation into the scaled barrier layer. Fabricated enhancement-mode MOS-HEMTs exhibit an excellent performance as compared to those with the conventional dielectric-last technique, delivering a large maximum drain current of 916 mA/mm and simultaneously a high peak transconductance of 342 mS/mm. The balanced DC characteristics indicate that advanced gate stack dielectrics combined with buffered fluorine ions implantation have a great potential for high speed GaN E/D-mode integrated circuit applications.

Key words: AlGaN/GaNenhancement-mode (E-mode)stack gate dielectricsatomic layer deposition (ALD)



[1]
Burnham S D, Boutros K, Hashimoto P, et al. Gate-recessed normally-off GaN-on-Si HEMT using a new O2-BCl3 digital etching technique. Phys Status Solidi C, 2010, 7(7/8):2010
[2]
Wang Y, Wang M, Xie B, et al. High-performance normally-off Al2O3/GaN MOSFET using a wet etching-based gate recess technique. IEEE Electron Devices Lett, 2013, 34(11):1370
[3]
Cai Y, Zhou Y, Chen K J, et al. High-performance enhancement-mode AlGaN/GaN HEMTs using fluorine-based plasma treatment. IEEE Electron Devices Lett, 2005, 26(7):435
[4]
Chen C, Liu X, Tian B, et al. Fabrication of enhancement-mode AlGaN/GaN MISHEMTs by using fluorinated Al2O3 as gate dielectrics. IEEE Electron Devices Lett, 2011, 32(10):1373
[5]
Zhao Y, Toyama M, Kita K, et al. Moisture-absorption-induced permittivity deterioration and surface roughness. Appl Phys Lett, 2006, 88(7):072904
[6]
Higashiwaki M, Mimura T, Matsui T. Enhancement-mode AlN/GaN HFETs using cat-CVD SiN. IEEE Trans Electron Devices, 2007, 54(6):1566
[7]
Maeda N, Hiroki M, Sasaki S, et al. High-temperature characteristics in recessed-gate AlGaN/GaN enhancement-mode heterostructure field effect transistors with enhanced-barrier structures. Jpn J Appl Phys, 2013, 52:08 JN18
[8]
Kanamura M, Ohki T, Kikkawa T, et al. Enhancement-mode GaN MIS-HEMTs with n-GaN/i-AlN/n-GaN triple cap layer and high-k gate dielectrics. IEEE Electron Devices Lett, 2010, 31(3):189
[9]
Adachi T, Deguchi T, Nakagawa A, et al. High-performance E-mode AlGaN/GaN HEMTs with LT-GaN cap layer using gate recess techniques. 66th DRC Tech Dig 2008:129
[10]
Lu B, Saadat O I, Palacios T. High-performance integrated dual gate AlGaN/GaN enhancement-mode transistor. IEEE Electron Devices Lett, 2010, 31(9):990
[11]
Corrion A L, Shinohara K, Regan D, et al. Enhancement-mode AlN/GaN/AlGaN DHFET with 700-mS/mm gm and 112-GHz fT. IEEE Electron Devices Lett, 2010, 31(10):1116
[12]
Micovic M, Tsen T, Hu M, et al. GaN enhancement/depletion-mode FET logic for mixed signal applications. Electron Lett 2005, 41(19):1081
[13]
Palacios T, Suh C S, Chakraborty A, et al. High-performance E-mode AlGaN/GaN HEMTs. IEEE Electron Devices Lett, 2006, 27(6):428
[14]
Endoh A, Yamashita Y, Ikeda K, et al. Non-recessed-gate enhancement-mode AlGaN/GaN high electron mobility transistors with high RF performance. Jpn J Appl Phys, 2004, 43(4B):2255
[15]
Singisetti U, Wong M H, Dasgupta S, et al. Enhancement-mode N-polar GaN MISFETs with self-aligned source/drain regrowth. IEEE Electron Devices Lett, 2011, 32(2):137
[16]
Lu B, Matioli E, Palacios T. Tri-gate normally-off GaN power MISFET. IEEE Electron Devices Lett, 2012, 33(3):360
[17]
Hahn H, Lükens G, Ketteniss N, et al. Recessed-gate enhancement-mode AlGaN/GaN heterostructure field-effect transistors on Si with record DC performance. Appl Phys Exp, 2011, 4:114102
[18]
Im K S, Ha J B, Kim K W, et al. Normally off GaN MOSFET based on AlGaN/GaN heterostructure with extremely high 2DEG density grown on silicon substrate. IEEE Electron Devices Lett, 2010, 31(3):192
[19]
Chu R, Chen Z, DenBaars S P, et al. V-gate GaN HEMTs with engineered buffer for normally off operation. IEEE Electron Devices Lett, 2008, 29(11):1184
Fig. 1.  (Color online) Schematic views of (a) fluorinated-gate dielectrics MOS-HEMT and (b) conventional dielectric-last MOS-HEMT.

Fig. 2.  (Color online) DC IDSVDS characteristics of fabricated E-mode devices (a) output curves with VGS stepping from –1 to 4 V and (b)transfer characteristics measured at VDS D 10 V.

Fig. 3.  (Color online) (a) IGVG characteristics of HEMT, D- and E-mode MOS-HEMTs. (b) Extracted apparent electron concentrations as a function of depth for E- and D-mode MOS-HEMTs.

Fig. 4.  Variation of XPS spectra versus Ar+ sputtering time.

Fig. 5.  Benchmark plot of (a) IDS;max and (b) Gm versus LG for GaN based E-mode devices.

[1]
Burnham S D, Boutros K, Hashimoto P, et al. Gate-recessed normally-off GaN-on-Si HEMT using a new O2-BCl3 digital etching technique. Phys Status Solidi C, 2010, 7(7/8):2010
[2]
Wang Y, Wang M, Xie B, et al. High-performance normally-off Al2O3/GaN MOSFET using a wet etching-based gate recess technique. IEEE Electron Devices Lett, 2013, 34(11):1370
[3]
Cai Y, Zhou Y, Chen K J, et al. High-performance enhancement-mode AlGaN/GaN HEMTs using fluorine-based plasma treatment. IEEE Electron Devices Lett, 2005, 26(7):435
[4]
Chen C, Liu X, Tian B, et al. Fabrication of enhancement-mode AlGaN/GaN MISHEMTs by using fluorinated Al2O3 as gate dielectrics. IEEE Electron Devices Lett, 2011, 32(10):1373
[5]
Zhao Y, Toyama M, Kita K, et al. Moisture-absorption-induced permittivity deterioration and surface roughness. Appl Phys Lett, 2006, 88(7):072904
[6]
Higashiwaki M, Mimura T, Matsui T. Enhancement-mode AlN/GaN HFETs using cat-CVD SiN. IEEE Trans Electron Devices, 2007, 54(6):1566
[7]
Maeda N, Hiroki M, Sasaki S, et al. High-temperature characteristics in recessed-gate AlGaN/GaN enhancement-mode heterostructure field effect transistors with enhanced-barrier structures. Jpn J Appl Phys, 2013, 52:08 JN18
[8]
Kanamura M, Ohki T, Kikkawa T, et al. Enhancement-mode GaN MIS-HEMTs with n-GaN/i-AlN/n-GaN triple cap layer and high-k gate dielectrics. IEEE Electron Devices Lett, 2010, 31(3):189
[9]
Adachi T, Deguchi T, Nakagawa A, et al. High-performance E-mode AlGaN/GaN HEMTs with LT-GaN cap layer using gate recess techniques. 66th DRC Tech Dig 2008:129
[10]
Lu B, Saadat O I, Palacios T. High-performance integrated dual gate AlGaN/GaN enhancement-mode transistor. IEEE Electron Devices Lett, 2010, 31(9):990
[11]
Corrion A L, Shinohara K, Regan D, et al. Enhancement-mode AlN/GaN/AlGaN DHFET with 700-mS/mm gm and 112-GHz fT. IEEE Electron Devices Lett, 2010, 31(10):1116
[12]
Micovic M, Tsen T, Hu M, et al. GaN enhancement/depletion-mode FET logic for mixed signal applications. Electron Lett 2005, 41(19):1081
[13]
Palacios T, Suh C S, Chakraborty A, et al. High-performance E-mode AlGaN/GaN HEMTs. IEEE Electron Devices Lett, 2006, 27(6):428
[14]
Endoh A, Yamashita Y, Ikeda K, et al. Non-recessed-gate enhancement-mode AlGaN/GaN high electron mobility transistors with high RF performance. Jpn J Appl Phys, 2004, 43(4B):2255
[15]
Singisetti U, Wong M H, Dasgupta S, et al. Enhancement-mode N-polar GaN MISFETs with self-aligned source/drain regrowth. IEEE Electron Devices Lett, 2011, 32(2):137
[16]
Lu B, Matioli E, Palacios T. Tri-gate normally-off GaN power MISFET. IEEE Electron Devices Lett, 2012, 33(3):360
[17]
Hahn H, Lükens G, Ketteniss N, et al. Recessed-gate enhancement-mode AlGaN/GaN heterostructure field-effect transistors on Si with record DC performance. Appl Phys Exp, 2011, 4:114102
[18]
Im K S, Ha J B, Kim K W, et al. Normally off GaN MOSFET based on AlGaN/GaN heterostructure with extremely high 2DEG density grown on silicon substrate. IEEE Electron Devices Lett, 2010, 31(3):192
[19]
Chu R, Chen Z, DenBaars S P, et al. V-gate GaN HEMTs with engineered buffer for normally off operation. IEEE Electron Devices Lett, 2008, 29(11):1184
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2813 Times PDF downloads: 40 Times Cited by: 0 Times

    History

    Received: 11 November 2015 Revised: 28 December 2015 Online: Published: 01 June 2016

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Tao Gao, Ruimin Xu, Kai Zhang, Yuechan Kong, Jianjun Zhou, Cen Kong, Xinxin Yu, Xun Dong, Tangsheng Chen. High-performance enhancement-mode AlGaN/GaN MOS-HEMTs with fluorinated stack gate dielectrics and thin barrier layer[J]. Journal of Semiconductors, 2016, 37(6): 064013. doi: 10.1088/1674-4926/37/6/064013 T Gao, R M Xu, K Zhang, Y C Kong, J J Zhou, C Kong, X X Yu, X Dong, T S Chen. High-performance enhancement-mode AlGaN/GaN MOS-HEMTs with fluorinated stack gate dielectrics and thin barrier layer[J]. J. Semicond., 2016, 37(6): 064013. doi: 10.1088/1674-4926/37/6/064013.Export: BibTex EndNote
      Citation:
      Tao Gao, Ruimin Xu, Kai Zhang, Yuechan Kong, Jianjun Zhou, Cen Kong, Xinxin Yu, Xun Dong, Tangsheng Chen. High-performance enhancement-mode AlGaN/GaN MOS-HEMTs with fluorinated stack gate dielectrics and thin barrier layer[J]. Journal of Semiconductors, 2016, 37(6): 064013. doi: 10.1088/1674-4926/37/6/064013

      T Gao, R M Xu, K Zhang, Y C Kong, J J Zhou, C Kong, X X Yu, X Dong, T S Chen. High-performance enhancement-mode AlGaN/GaN MOS-HEMTs with fluorinated stack gate dielectrics and thin barrier layer[J]. J. Semicond., 2016, 37(6): 064013. doi: 10.1088/1674-4926/37/6/064013.
      Export: BibTex EndNote

      High-performance enhancement-mode AlGaN/GaN MOS-HEMTs with fluorinated stack gate dielectrics and thin barrier layer

      doi: 10.1088/1674-4926/37/6/064013
      Funds:

      Project supported by the National Natural Science Foundation of China (Nos. 61504125, 61474101, 61106130 61076120, 61505181), and the Natural Science Foundation of Jiangsu Province of China (Nos. BK20131072, BE2012007, BK2012516)

      the Natural Science Foundation of Jiangsu Province of China Nos. BK20131072, BE2012007, BK2012516

      Project supported by the National Natural Science Foundation of China Nos. 61504125, 61474101, 61106130 61076120, 61505181

      More Information
      • Corresponding author: Email: haigui.34@163.com
      • Received Date: 2015-11-11
      • Revised Date: 2015-12-28
      • Published Date: 2016-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return