SEMICONDUCTOR INTEGRATED CIRCUITS

A CMOS detection chip for amperometric sensors with chopper stabilized incremental ΔΣ ADC

Min Chen1, Yuntao Liu2, Jingbo Xiao1 and Jie Chen1,

+ Author Affiliations

 Corresponding author: Jie Chen, Email: jchen@ime.ac.cn

PDF

Abstract: This paper presents a low noise complimentary metal-oxide-semiconductor (CMOS) detection chip for amperometric electrochemical sensors. In order to effectively remove the input offset of the cascaded integrators and the low frequency noise in the modulator, a novel offset cancellation chopping scheme was proposed in the Incremental Δ Σ analog to digital converter (IADC). A novel low power potentiostat was employed in this chip to provide the biasing voltage for the sensor while mirroring the sensor current out for detection. The chip communicates with FPGA through standard built in I2C interface and SPI bus. Fabricated in 0.18-μm CMOS process, this chip detects current signal with high accuracy and high linearity. A prototype microsystem was produced to verify the detection chip performance with current input as well as micro-sensors.

Key words: CMOSamperometric sensorschopper-stabilizedsystem-on-chip (SoC)



[1]
Liu Jialin, Zhang Xu, Hu Xiaohui, et al. A CMOS front end chip for implantable neural recording with wide voltage supply range. Journal of Semiconductors, 2015, 36(10):105003
[2]
Huang Y, Liu Y, Hassler B L, et al. A protein-based electrochemical biosensor array platform for integrated microsystems. IEEE Trans Biomed Circuits Syst, 2013, 7(1):43
[3]
Martin S M, Gebara F H, Larivee B J, et al. A CMOS-integrated microinstrument for trace detection of heavy metals. IEEE J Solid-State Circuits, 2005, 40(12):2777
[4]
Depari A, Flammini A, Sisinni E. Fast, versatile, and low-cost interface circuit for electrochemical and resistive gas sensor. IEEE Sensors Journal, 2014, 14(2):315
[5]
Lagarde F, Jaffrezic-Renault N. Cell-based electrochemical biosensors for water quality assessment. Analytical and Bioanalytical Chemistry, 2011, 400:947
[6]
Huang Y J, Tzeng T H, Lin T W, et al. A self-powered CMOS reconfigurable multi-sensor SoC for biomedical applications. IEEE J Solid-State Circuits, 2014, 49(4):851
[7]
Markus J, Silva J, Temes G C. Theory and applications of incremental delta-sigma converters. IEEE Trans Circuits Syst I, 2004, 51(4):678
[8]
Enz C C, Temes G C. Circuit techniques for reducing the effects of op-amp imperfections:autozeroing, correlated double sampling, and chopper stabilization. Proc IEEE, 1996, 84(11):1584
[9]
Huang Ting, Jin Lele, Li Hui, et al. A 1.2 V 600 nW 12-bit 2 kS/s incremental ADC for biosensor application. Journal of Semiconductors, 2014, 35(11):115007
[10]
Jafari H M, Genov R. Chopper-stabilized bidirectional current acquisition circuits for electrochemical amperometric biosensors. IEEE Trans Circuits Syst I, 2013, 60(5):1149
[11]
Fidler J C, Penrose W R, Bobis J P. A potentiostat based on a voltage-controlled current source for use with amperometric gas sensors. IEEE Trans Instrum Measure, 1992, 41(2):308
[12]
Park H, Nam K Y, Su D K, et al. A 0.7-V 870μ W digital audio CMOS sigma-delta modulator. IEEE J Solid-State Circuits, 2009, 44(4):1078
[13]
Quiquempoix V, Deval P, Barreto P, et al. A low-power 22-bit incremental ADC. IEEE J Solid-State Circuits, 2006, 41(7):1562
[14]
Agnes A, Bonizzoni E, Maloberti F. High-resolution multi-bit second-order incremental converter with 1.5-μ V residual offset and 94-dB SFDR. Analog Integrated Circuits and Signal Processing, 2012, 72:531
[15]
Li Zhichao, Liu Yuntao, Chen Min, et al. A CMOS analog front-end chip for amperometric electrochemical sensors. Journal of Semiconductors, 2015, 36(7):075004
[16]
Busoni L, Carla M, Lanzi L. A comparison between potentiostatic circuits with grounded work or auxiliary electrode. Rev Scient Instrum, 2002, 73(4):1921
[17]
Balasubramanian V, Ruedi P F, Temiz Y, et al. A 0.18μm biosensor front-end based on noise, distortion cancelation and chopper stabilization techniques. IEEE Trans Biomedical Circuits Syst, 2013, 7(5):660
[18]
Martin S M, Gebara F H, Strong T D, et al. A fully differential potentiostat. IEEE Sensors Journal, 2009, 9(2):135
Fig. 1.  Architecture of the microsystem.

Fig. 2.  Fully differential third-order incremental ∑-Δ modulator and its timing diagram.

Fig. 3.  Grounded WE potentiostat.

Fig. 4.  Microphotograph of the detection chip.

Fig. 5.  (Color online) Measured modulator output spectrum with chopper off/on.

Fig. 6.  (Color online) Measured SNDR with chopper off/on.

Fig. 7.  (Color online) (a) Offset measurement with chopper off (1024 counts). (b) Offset measurement with chopper on (1024 counts).

Fig. 8.  (Color online) Photo of the microsystem platform.

Fig. 9.  (Color online) Measured digital data with 0.1–10 μA current.

Fig. 10.  (Color online) Measured digital data with different total nitrogen concentration.

Table 1.   Output of each integrator with chopping.

N The first integrator output The second integrator output The third integrator output
1 Vin+Vos Vin+Vos Vin+Vos
2 2Vin 3Vin+Vos 4Vin+2Vos
3 3Vin+Vos 6Vin+2Vos 10Vin+4Vos
4 4Vin 10Vin+2Vos 20Vin+6Vos
5 5Vin+Vos 15Vin+3Vos 35Vin+9Vos
6 6Vin 21Vin+3Vos 56Vin+12Vos
7 7Vin+Vos 28Vin+4Vos 84Vin+16Vos
8 8Vin 36Vin+4Vos 120Vin+20Vos
n nVin $\frac{n(n+1)}{\text{2}}{{V}_{\text{in}}}+\frac{n}{2}{{V}_{\text{os}}}$ $\begin{align} & \frac{n(n+1)(n+2)}{6}{{V}_{\text{in}}}+ \\ & \frac{n(n+2)}{4}{{V}_{\text{os}}} \\ \end{align}$
*, n is an even number in this table.
DownLoad: CSV

Table 2.   Output of each integrator with novel chopping.

N The first integrator output The second integrator output The third integrator output
1 Vin+VosVin+Vos Vin+Vos
22Vin 3Vin+Vos 4Vin+ 2Vos
33Vin-Vos 6Vin 10Vin+ 2Vos
4 4Vin 10Vin 20Vin+ 2Vos
5 5Vin-Vos15Vin-Vos35Vin+Vos
6 6Vin 21Vin-Vos 56Vin
7 7Vin+Vos 28Vin 84Vin
8 8Vin 36Vin 120Vin
n nVin $\frac{{n(n+1)}}{{2}}{V}_{\rm in} $ $\frac{{n(n+1)(n+2)}}{6}{V}_{\text{in}} $
*, n=8i(i=1, 2, 3, ...) in this table.
DownLoad: CSV
[1]
Liu Jialin, Zhang Xu, Hu Xiaohui, et al. A CMOS front end chip for implantable neural recording with wide voltage supply range. Journal of Semiconductors, 2015, 36(10):105003
[2]
Huang Y, Liu Y, Hassler B L, et al. A protein-based electrochemical biosensor array platform for integrated microsystems. IEEE Trans Biomed Circuits Syst, 2013, 7(1):43
[3]
Martin S M, Gebara F H, Larivee B J, et al. A CMOS-integrated microinstrument for trace detection of heavy metals. IEEE J Solid-State Circuits, 2005, 40(12):2777
[4]
Depari A, Flammini A, Sisinni E. Fast, versatile, and low-cost interface circuit for electrochemical and resistive gas sensor. IEEE Sensors Journal, 2014, 14(2):315
[5]
Lagarde F, Jaffrezic-Renault N. Cell-based electrochemical biosensors for water quality assessment. Analytical and Bioanalytical Chemistry, 2011, 400:947
[6]
Huang Y J, Tzeng T H, Lin T W, et al. A self-powered CMOS reconfigurable multi-sensor SoC for biomedical applications. IEEE J Solid-State Circuits, 2014, 49(4):851
[7]
Markus J, Silva J, Temes G C. Theory and applications of incremental delta-sigma converters. IEEE Trans Circuits Syst I, 2004, 51(4):678
[8]
Enz C C, Temes G C. Circuit techniques for reducing the effects of op-amp imperfections:autozeroing, correlated double sampling, and chopper stabilization. Proc IEEE, 1996, 84(11):1584
[9]
Huang Ting, Jin Lele, Li Hui, et al. A 1.2 V 600 nW 12-bit 2 kS/s incremental ADC for biosensor application. Journal of Semiconductors, 2014, 35(11):115007
[10]
Jafari H M, Genov R. Chopper-stabilized bidirectional current acquisition circuits for electrochemical amperometric biosensors. IEEE Trans Circuits Syst I, 2013, 60(5):1149
[11]
Fidler J C, Penrose W R, Bobis J P. A potentiostat based on a voltage-controlled current source for use with amperometric gas sensors. IEEE Trans Instrum Measure, 1992, 41(2):308
[12]
Park H, Nam K Y, Su D K, et al. A 0.7-V 870μ W digital audio CMOS sigma-delta modulator. IEEE J Solid-State Circuits, 2009, 44(4):1078
[13]
Quiquempoix V, Deval P, Barreto P, et al. A low-power 22-bit incremental ADC. IEEE J Solid-State Circuits, 2006, 41(7):1562
[14]
Agnes A, Bonizzoni E, Maloberti F. High-resolution multi-bit second-order incremental converter with 1.5-μ V residual offset and 94-dB SFDR. Analog Integrated Circuits and Signal Processing, 2012, 72:531
[15]
Li Zhichao, Liu Yuntao, Chen Min, et al. A CMOS analog front-end chip for amperometric electrochemical sensors. Journal of Semiconductors, 2015, 36(7):075004
[16]
Busoni L, Carla M, Lanzi L. A comparison between potentiostatic circuits with grounded work or auxiliary electrode. Rev Scient Instrum, 2002, 73(4):1921
[17]
Balasubramanian V, Ruedi P F, Temiz Y, et al. A 0.18μm biosensor front-end based on noise, distortion cancelation and chopper stabilization techniques. IEEE Trans Biomedical Circuits Syst, 2013, 7(5):660
[18]
Martin S M, Gebara F H, Strong T D, et al. A fully differential potentiostat. IEEE Sensors Journal, 2009, 9(2):135
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3203 Times PDF downloads: 42 Times Cited by: 0 Times

    History

    Received: 11 November 2015 Revised: 28 December 2015 Online: Published: 01 June 2016

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Min Chen, Yuntao Liu, Jingbo Xiao, Jie Chen. A CMOS detection chip for amperometric sensors with chopper stabilized incremental ΔΣ ADC[J]. Journal of Semiconductors, 2016, 37(6): 065004. doi: 10.1088/1674-4926/37/6/065004 M Chen, Y T Liu, J B Xiao, J Chen. A CMOS detection chip for amperometric sensors with chopper stabilized incremental ΔΣ ADC[J]. J. Semicond., 2016, 37(6): 065004. doi: 10.1088/1674-4926/37/6/065004.Export: BibTex EndNote
      Citation:
      Min Chen, Yuntao Liu, Jingbo Xiao, Jie Chen. A CMOS detection chip for amperometric sensors with chopper stabilized incremental ΔΣ ADC[J]. Journal of Semiconductors, 2016, 37(6): 065004. doi: 10.1088/1674-4926/37/6/065004

      M Chen, Y T Liu, J B Xiao, J Chen. A CMOS detection chip for amperometric sensors with chopper stabilized incremental ΔΣ ADC[J]. J. Semicond., 2016, 37(6): 065004. doi: 10.1088/1674-4926/37/6/065004.
      Export: BibTex EndNote

      A CMOS detection chip for amperometric sensors with chopper stabilized incremental ΔΣ ADC

      doi: 10.1088/1674-4926/37/6/065004
      Funds:

      Project supported by the State Key Development Program for Basic Research of China No. 2015CB352100

      Project supported by the State Key Development Program for Basic Research of China (No. 2015CB352100).

      More Information
      • Corresponding author: Email: jchen@ime.ac.cn
      • Received Date: 2015-11-11
      • Revised Date: 2015-12-28
      • Published Date: 2016-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return