SEMICONDUCTOR MATERIALS

High haze textured surface B-doped ZnO-TCO films on wet-chemically etched glass substrates for thin film solar cells

Xinliang Chen1, 2, 3, , Jieming Liu1, 2, 3, Jia Fang1, 2, 3, Ze Chen1, 2, 3, Ying Zhao1, 2, 3 and Xiaodan Zhang1, 2, 3

+ Author Affiliations

 Corresponding author: Chen Xinliang, Email: cxlruzhou@163.com

PDF

Abstract: Textured glass substrates with crater-like feature sizes of 5-30μm were obtained using the chemical etching method through adjusting the treatment round (R). Pyramid-like boron-doped zinc oxide (ZnO:B) films with feature sizes of 300-800 nm were deposited on the etched glass substrates by the metal organic chemical deposition (MOCVD) technique using water, diethylzinc and 1%-hydrogen-diluted diborane. The ZnO:B films on the etched glass with micro/nano double textures presented a much stronger light-scattering capability than the conventional ZnO:B on the flat glass and their electrical properties changed little. Typical etched glass-3R/ZnO:B exhibited a high root mean square (RMS) roughness of 160 nm. The haze values at the wavelengths of 550 nm and 850 nm for etched glass-3R/ZnO:B sample were 61% and 42%, respectively. Finally, the optimized etched glass/ZnO:B was applied in the silicon (Si) based thin film solar cells. The high haze etched glass/ZnO:B substrates have potential merits for thin film solar cells.

Key words: semiconductorssurfacesthin filmscrystal growthoptical properties



[1]
Shah A V, Schade H, Vanecek M, et al. Thin-film silicon solar cell technology. Progress in Photovoltaics: Research and Applications, 2004, 12: 113 doi: 10.1002/(ISSN)1099-159X
[2]
Terakawa A. Review of thin-film silicon deposition techniques for high-efficiency solar cells developed at Panasonic/Sanyo. Solar Energy Materials and Solar Cells, 2013, 119: 204 doi: 10.1016/j.solmat.2013.06.044
[3]
Kim S, Chung J W, Lee H, et al. Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology. Solar Energy Materials and Solar Cells, 2013, 119: 26 doi: 10.1016/j.solmat.2013.04.016
[4]
Muller J, Rech B, Springer J, et al. TCO and light trapping in silicon thin film solar cells. Solar Energy, 2004, 77: 917 doi: 10.1016/j.solener.2004.03.015
[5]
Chen X L, Xu B H, Xue J M, et al. Boron-doped zinc oxide thin films for large-area solar cells grown by metal organic chemical vapor deposition. Thin Solid Films, 2007, 515: 3753 doi: 10.1016/j.tsf.2006.09.039
[6]
Üpping J, Bielawny A, Wehrspohn R B, et al. Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells. Advanced Materials, 2011, 23: 3896 doi: 10.1002/adma.v23.34
[7]
Feltrin A, Meguro T, Van Assche E, et al. Advanced light trapping designs for high efficiency thin film silicon solar cells. Solar Energy Materials and Solar Cells, 2013, 119: 219 doi: 10.1016/j.solmat.2013.07.012
[8]
Mahadik M A, Hunge Y M, Shinde S S, et al. Semiconducting properties of aluminum-doped ZnO thin films grown by spray pyrolysis technique. Journal of Semiconductors, 2015, 36(3): 033002 doi: 10.1088/1674-4926/36/3/033002
[9]
Saha S K, Rahman M A, Sarkar M R H, et al. Effect of Co doping on structural, optical, electrical and thermal properties of nanostructured ZnO thin films. Journal of Semiconductors, 2015, 36(3): 033004 doi: 10.1088/1674-4926/36/3/033004
[10]
Karim A M M T, Khan M K R, Rahman M M. Structural and opto-electrical properties of pyrolized ZnO-CdO crystalline thin films. Journal of Semiconductors, 2015, 36(5): 053001 doi: 10.1088/1674-4926/36/5/053001
[11]
Liu Yang, Ma Jianping, Liu Fuli, et al. Physical vapor transport crystal growth of ZnO. Journal of Semiconductors, 2014, 35(3): 033001 doi: 10.1088/1674-4926/35/3/033001
[12]
Fay S, Feitknecht L, Schlüchter R, et al. Rough ZnO layers by LP-CVD process and their effect in improving performances of amorphous and microcrystalline silicon solar cells. Solar Energy Materials and Solar Cells, 2006, 90: 2960 doi: 10.1016/j.solmat.2006.06.003
[13]
Berginski M, Hüpkes J, Schulte M, et al. The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells. J Appl Phys 2007, 101: 074903 doi: 10.1063/1.2715554
[14]
Chen X L, Li L N, Wang F, et al. Natively textured surface aluminum-doped zinc oxide transparent conductive layers for thin film solar cells via pulsed direct-current reactive magnetron sputtering. Thin Solid Films, 2012, 520: 5392 doi: 10.1016/j.tsf.2012.03.120
[15]
Steinhauser J, Boucher J F, Omnes E, et al. Improving low pressure chemical vapor deposited zinc oxide contacts for thin film silicon solar cells by using rough glass substrates. Thin Solid Films, 2011, 520: 1218 doi: 10.1016/j.tsf.2011.06.080
[16]
Kim J, Battaglia C, Charriére M, et al. 9.4% efficient amorphous silicon solar cell on high aspect-ratio glass microcones. Advanced Materials, 2014, 26: 4082 doi: 10.1002/adma.v26.24
[17]
Addonizio M L, Antonaia A. Surface morphology and light scattering properties of plasma etched ZnO:B films grown by LP-MOCVD for silicon thin film solar cells. Thin Solid Films, 2009, 518: 1026 doi: 10.1016/j.tsf.2009.07.200
[18]
Boccard M, Battaglia C, Hanni S, et al. Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells. Nano Lett, 2012, 12: 1344 doi: 10.1021/nl203909u
[19]
Hongsingthong A, Krajangsang T, Yunaz I A, et al. ZnO films with very high haze value for use as front transparent conductive oxide films in thin-film silicon solar cells. Applied Physics Express, 2010, 3: 051102 doi: 10.1143/APEX.3.051102
[20]
Hongsingthong A, Krajangsang T, Limmanee A, et al. Development of textured ZnO-coated low-cost glass substrate with very high haze ratio for silicon-based thin film solar cells. Thin Solid Films, 2013, 537: 291 doi: 10.1016/j.tsf.2013.04.138
[21]
Janthong B, Moriya Y, Hongsingthong A, et al. Management of light-trapping effect for a-Si:H/μc-Si:H tandem solar cells using novel substrates, based on MOCVD ZnO and etched white glass. Solar Energy Materials and Solar Cells, 2013, 119: 209 doi: 10.1016/j.solmat.2013.06.045
[22]
Chen X L, Geng X H, Xue J M, et al. Temperature-dependent growth of zinc oxide thin films grown by metal organic chemical vapor deposition. J Cryst Growth, 2006, 296: 43 doi: 10.1016/j.jcrysgro.2006.08.028
[23]
Tan H, Psomadaki E, Isabella O, et al. Micro-textures for efficient light trapping and improved electrical performance in thin-film nanocrystalline silicon solar cells. Appl Phys Lett, 2013, 103: 173905 doi: 10.1063/1.4826639
[24]
Chen X L, Yan C B, Chen X, et al. Textured surface ZnO:B and IWO/ZnO:B TCO layers for Si-based thin film solar cells. Proceeding of the 26th European Photovoltaic Solar Energy Conference (EU-PVSEC), Hamburg, Germany, 2011: 2482 http://cn.bing.com/academic/profile?id=69555615&encoded=0&v=paper_preview&mkt=zh-cn
[25]
Krc J, Smole F, Topic M, Analysis of light scattering in amorphous Si:H solar cells by a one-dimensional semi-coherent optical model. Progress in Photovoltaics: Research and Application 2013, 11: 15 http://cn.bing.com/academic/profile?id=2069741452&encoded=0&v=paper_preview&mkt=zh-cn
[26]
Steinhauser J, Faÿ S, Oliveira N, et al. Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films. Appl Phys Lett, 2007, 90: 142107 doi: 10.1063/1.2719158
[27]
Shah A. Thin-film silicon solar cells. Lausanne: Swiss EPFL Press, 2010
Fig. 1.  Typical SEM images of chemically etched superwhite glasses with different treatment rounds: (a) 0 (flat glass), (b) 3 R, (c) 6 R and (d) 8 R.

Fig. 2.  Typical SEM images of ZnO:B films on chemically etched superwhite glasses with different treatment rounds: (a) and (b) for flat glass/ZnO:B, (c) and (d) for etched glass-3 R/ZnO:B, (e) and (f) for etched glass-6 R/ZnO:B, (g) and (h) etched glass-8 R/ZnO:B. Note that (b), (d), (f) and (h) are the corresponding enlarged images.

Fig. 3.  (Color online) Typical AFM images of ZnO:B fims. (a) Flat glass/ZnO:B, RMS roughness: 66 nm. (b) Etched glass-3 R/ZnO:B, RMS roughness: 160 nm. (c) Etched glass-8 R/ZnO:B, RMS roughness: 98 nm.

Fig. 4.  Typical haze value curves of ZnO:B films on chemically etched superwhite glasses with different treatment rounds.

Fig. 5.  (a) I-V curves of a-Si:H thin film solar cells with the flat glass/ZnO:B and etched glass-3 R/ZnO:B substrates. (b) QE curves of a-Si:H thin film solar cells with the flat glass/ZnO:B and etched glass-3 R/ZnO substrates.

Table 1.   Electrical properties of ZnO:B fims on chemically etched superwhite glasses with different treatment rounds.

[1]
Shah A V, Schade H, Vanecek M, et al. Thin-film silicon solar cell technology. Progress in Photovoltaics: Research and Applications, 2004, 12: 113 doi: 10.1002/(ISSN)1099-159X
[2]
Terakawa A. Review of thin-film silicon deposition techniques for high-efficiency solar cells developed at Panasonic/Sanyo. Solar Energy Materials and Solar Cells, 2013, 119: 204 doi: 10.1016/j.solmat.2013.06.044
[3]
Kim S, Chung J W, Lee H, et al. Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology. Solar Energy Materials and Solar Cells, 2013, 119: 26 doi: 10.1016/j.solmat.2013.04.016
[4]
Muller J, Rech B, Springer J, et al. TCO and light trapping in silicon thin film solar cells. Solar Energy, 2004, 77: 917 doi: 10.1016/j.solener.2004.03.015
[5]
Chen X L, Xu B H, Xue J M, et al. Boron-doped zinc oxide thin films for large-area solar cells grown by metal organic chemical vapor deposition. Thin Solid Films, 2007, 515: 3753 doi: 10.1016/j.tsf.2006.09.039
[6]
Üpping J, Bielawny A, Wehrspohn R B, et al. Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells. Advanced Materials, 2011, 23: 3896 doi: 10.1002/adma.v23.34
[7]
Feltrin A, Meguro T, Van Assche E, et al. Advanced light trapping designs for high efficiency thin film silicon solar cells. Solar Energy Materials and Solar Cells, 2013, 119: 219 doi: 10.1016/j.solmat.2013.07.012
[8]
Mahadik M A, Hunge Y M, Shinde S S, et al. Semiconducting properties of aluminum-doped ZnO thin films grown by spray pyrolysis technique. Journal of Semiconductors, 2015, 36(3): 033002 doi: 10.1088/1674-4926/36/3/033002
[9]
Saha S K, Rahman M A, Sarkar M R H, et al. Effect of Co doping on structural, optical, electrical and thermal properties of nanostructured ZnO thin films. Journal of Semiconductors, 2015, 36(3): 033004 doi: 10.1088/1674-4926/36/3/033004
[10]
Karim A M M T, Khan M K R, Rahman M M. Structural and opto-electrical properties of pyrolized ZnO-CdO crystalline thin films. Journal of Semiconductors, 2015, 36(5): 053001 doi: 10.1088/1674-4926/36/5/053001
[11]
Liu Yang, Ma Jianping, Liu Fuli, et al. Physical vapor transport crystal growth of ZnO. Journal of Semiconductors, 2014, 35(3): 033001 doi: 10.1088/1674-4926/35/3/033001
[12]
Fay S, Feitknecht L, Schlüchter R, et al. Rough ZnO layers by LP-CVD process and their effect in improving performances of amorphous and microcrystalline silicon solar cells. Solar Energy Materials and Solar Cells, 2006, 90: 2960 doi: 10.1016/j.solmat.2006.06.003
[13]
Berginski M, Hüpkes J, Schulte M, et al. The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells. J Appl Phys 2007, 101: 074903 doi: 10.1063/1.2715554
[14]
Chen X L, Li L N, Wang F, et al. Natively textured surface aluminum-doped zinc oxide transparent conductive layers for thin film solar cells via pulsed direct-current reactive magnetron sputtering. Thin Solid Films, 2012, 520: 5392 doi: 10.1016/j.tsf.2012.03.120
[15]
Steinhauser J, Boucher J F, Omnes E, et al. Improving low pressure chemical vapor deposited zinc oxide contacts for thin film silicon solar cells by using rough glass substrates. Thin Solid Films, 2011, 520: 1218 doi: 10.1016/j.tsf.2011.06.080
[16]
Kim J, Battaglia C, Charriére M, et al. 9.4% efficient amorphous silicon solar cell on high aspect-ratio glass microcones. Advanced Materials, 2014, 26: 4082 doi: 10.1002/adma.v26.24
[17]
Addonizio M L, Antonaia A. Surface morphology and light scattering properties of plasma etched ZnO:B films grown by LP-MOCVD for silicon thin film solar cells. Thin Solid Films, 2009, 518: 1026 doi: 10.1016/j.tsf.2009.07.200
[18]
Boccard M, Battaglia C, Hanni S, et al. Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells. Nano Lett, 2012, 12: 1344 doi: 10.1021/nl203909u
[19]
Hongsingthong A, Krajangsang T, Yunaz I A, et al. ZnO films with very high haze value for use as front transparent conductive oxide films in thin-film silicon solar cells. Applied Physics Express, 2010, 3: 051102 doi: 10.1143/APEX.3.051102
[20]
Hongsingthong A, Krajangsang T, Limmanee A, et al. Development of textured ZnO-coated low-cost glass substrate with very high haze ratio for silicon-based thin film solar cells. Thin Solid Films, 2013, 537: 291 doi: 10.1016/j.tsf.2013.04.138
[21]
Janthong B, Moriya Y, Hongsingthong A, et al. Management of light-trapping effect for a-Si:H/μc-Si:H tandem solar cells using novel substrates, based on MOCVD ZnO and etched white glass. Solar Energy Materials and Solar Cells, 2013, 119: 209 doi: 10.1016/j.solmat.2013.06.045
[22]
Chen X L, Geng X H, Xue J M, et al. Temperature-dependent growth of zinc oxide thin films grown by metal organic chemical vapor deposition. J Cryst Growth, 2006, 296: 43 doi: 10.1016/j.jcrysgro.2006.08.028
[23]
Tan H, Psomadaki E, Isabella O, et al. Micro-textures for efficient light trapping and improved electrical performance in thin-film nanocrystalline silicon solar cells. Appl Phys Lett, 2013, 103: 173905 doi: 10.1063/1.4826639
[24]
Chen X L, Yan C B, Chen X, et al. Textured surface ZnO:B and IWO/ZnO:B TCO layers for Si-based thin film solar cells. Proceeding of the 26th European Photovoltaic Solar Energy Conference (EU-PVSEC), Hamburg, Germany, 2011: 2482 http://cn.bing.com/academic/profile?id=69555615&encoded=0&v=paper_preview&mkt=zh-cn
[25]
Krc J, Smole F, Topic M, Analysis of light scattering in amorphous Si:H solar cells by a one-dimensional semi-coherent optical model. Progress in Photovoltaics: Research and Application 2013, 11: 15 http://cn.bing.com/academic/profile?id=2069741452&encoded=0&v=paper_preview&mkt=zh-cn
[26]
Steinhauser J, Faÿ S, Oliveira N, et al. Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films. Appl Phys Lett, 2007, 90: 142107 doi: 10.1063/1.2719158
[27]
Shah A. Thin-film silicon solar cells. Lausanne: Swiss EPFL Press, 2010
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2884 Times PDF downloads: 21 Times Cited by: 0 Times

    History

    Received: 05 December 2015 Revised: 12 January 2016 Online: Published: 01 August 2016

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xinliang Chen, Jieming Liu, Jia Fang, Ze Chen, Ying Zhao, Xiaodan Zhang. High haze textured surface B-doped ZnO-TCO films on wet-chemically etched glass substrates for thin film solar cells[J]. Journal of Semiconductors, 2016, 37(8): 083003. doi: 10.1088/1674-4926/37/8/083003 X L Chen, J M Liu, J Fang, Z Chen, Y Zhao, X D Zhang. High haze textured surface B-doped ZnO-TCO films on wet-chemically etched glass substrates for thin film solar cells[J]. J. Semicond., 2016, 37(8): 083003. doi: 10.1088/1674-4926/37/8/083003.Export: BibTex EndNote
      Citation:
      Xinliang Chen, Jieming Liu, Jia Fang, Ze Chen, Ying Zhao, Xiaodan Zhang. High haze textured surface B-doped ZnO-TCO films on wet-chemically etched glass substrates for thin film solar cells[J]. Journal of Semiconductors, 2016, 37(8): 083003. doi: 10.1088/1674-4926/37/8/083003

      X L Chen, J M Liu, J Fang, Z Chen, Y Zhao, X D Zhang. High haze textured surface B-doped ZnO-TCO films on wet-chemically etched glass substrates for thin film solar cells[J]. J. Semicond., 2016, 37(8): 083003. doi: 10.1088/1674-4926/37/8/083003.
      Export: BibTex EndNote

      High haze textured surface B-doped ZnO-TCO films on wet-chemically etched glass substrates for thin film solar cells

      doi: 10.1088/1674-4926/37/8/083003
      Funds:

      the National High Technology Research and Development Program of China 2013AA050302

      Project supported by the State Key Development Program for Basic Research of China 2011CBA00706

      Project supported by the State Key Development Program for Basic Research of China (Nos. 2011CBA00706, 2011CBA00707), the Tianjin Applied Basic Research Project and Cutting-Edge Technology Research Plan (No. 13JCZDJC26900), the Tianjin Major Science and Technology Support Project (No. 11TXSYGX22100), the National High Technology Research and Development Program of China (No. 2013AA050302), and the Fundamental Research Funds for the Central Universities (No. 65010341)

      the Tianjin Major Science and Technology Support Project 11TXSYGX22100

      the Fundamental Research Funds for the Central Universities 65010341

      the Tianjin Applied Basic Research Project and Cutting-Edge Technology Research Plan 13JCZDJC26900

      Project supported by the State Key Development Program for Basic Research of China 2011CBA00706

      More Information
      • Corresponding author: Chen Xinliang, Email: cxlruzhou@163.com
      • Received Date: 2015-12-05
      • Revised Date: 2016-01-12
      • Published Date: 2016-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return