SEMICONDUCTOR INTEGRATED CIRCUITS

A reconfigurable passive mixer for multimode multistandard receivers in 0.18 μm CMOS

Xiangning Fan, Jian Tao, Kuan Bao and Zhigong Wang

+ Author Affiliations

 Corresponding author: Tao Jian, Email: jiantao@seu.edu.cn

PDF

Abstract: This paper presents a reconfigurable quadrature passive mixer for multimode multistandard receivers. By using controllable transconductor and transimpedance-amplifier stages, the voltage conversion gain of the mixer is reconfigured according to the requirement of the selected communication standard Other characteristics such as noises figure, linearity and power consumption are also reconfigured consequently. The design concept is verified by implementing a quadrature passive mixer in 0.18 μm CMOS technology. On wafer measurement results show that, with the input radio frequency ranges from 700 MHz to 2.3 GHz, the mixer achieves a controllable voltage conversion gain from 4 to 22 dB with a step size of 6 dB. The measured maximumⅡP3 is 8.5 dBm and the minimum noise figure is 8.0 dB. The consumed current for a single branch (I or Q) ranges from 3.1 to 5.6 mA from a 1.8 V supply voltage. The chip occupies an area of 0.71 mm2 including pads.

Key words: reconfigurablepassive mixermulti-standardcurrent-commutatingreceiversCMOS



[1]
Lin F, Mak P, Martins R. Wideband receivers: design challenges, tradeoffs and state-of-the-art. Circuits and Systems Magazine, 2015, 15(1): 12 doi: 10.1109/MCAS.2014.2385571
[2]
Murphy D, Mikhemar M, Mirzaei A, et al. Advances in the design of wideband receivers. IEEE Custom Integrated Circuits Conference (CICC), 2013: 1 http://cn.bing.com/academic/profile?id=1976640284&encoded=0&v=paper_preview&mkt=zh-cn
[3]
Abidi A. The path to SDR receiver. IEEE J Solid-State Circuits, 2007, 42(5): 954 doi: 10.1109/JSSC.2007.894307
[4]
Chen R, Hashemi H. A 0.5-to-3 GHz software-defined radio receiver using discrete-time RF signal processing. IEEE J Solid State Circuits, 2014, 49 (5): 1097 doi: 10.1109/JSSC.2014.2303791
[5]
El-Nozahi M, Sánchez-Sinencio E, Entesari K. Power-aware multiband multistandard CMOS receiver system-level budgeting. IEEE Trans Circuits Syst-Ⅱ, 2009, 56(7): 570 http://cn.bing.com/academic/profile?id=2104191916&encoded=0&v=paper_preview&mkt=zh-cn
[6]
Bao Kuan, Fan Xiangning, Li Wei, et al. A wideband current-commutating passive mixer for multi-standard receivers in a 0.18μm CMOS. Journal of Semiconductors, 2013, 34(1): 015003 doi: 10.1088/1674-4926/34/1/015003
[7]
Wu Chenjian, Li Zhiqun, Sun Ge. A low voltage low power up-conversion mixer for WSN application. Journal of Semiconductors, 2014, 35(4): 045006 doi: 10.1088/1674-4926/35/4/045006
[8]
Tang Xusheng, Wang Xiaoyu, Yang Jiang, et al. A high linearity dual-band mixer for IMT-A and UWB systems. Journal of Semiconductors, 2014, 35(11): 115006 doi: 10.1088/1674-4926/35/11/115006
[9]
Huang Y, Li W, Hu S, et al. A High-linearity WCDMA/GSM reconfigurable transceiver in 0.13μm CMOS. IEEE Trans Microw Theory Tech, 2013, 61(1): 204 doi: 10.1109/TMTT.2012.2222913
[10]
Wang X, Sturm J, Yan N, et al. 0.6-3 GHz wideband receiver RF front-end with a feedforward noise and distortion cancellation resistive-feedback LNA. IEEE Trans Microw Theory Tech, 2012, 60(2): 387 doi: 10.1109/TMTT.2011.2176138
[11]
Liempd B V, Borremans J, Martens E, et al. A 0.9 V 0.4-6 GHz harmonic recombination SDR receiver in 28 nm CMOS with HR3/HR5 andⅡP2 calibration. IEEE J Solid State Circuits, 2014, 49(8): 1815 doi: 10.1109/JSSC.2014.2321148
[12]
Brandolini M, Rossi P, Manstretta D, et al. Toward multistandard mobile terminals-fully integrated receivers requirements and architectures. IEEE Trans Microw Theory Tech, 2005, 53(3): 1026 doi: 10.1109/TMTT.2005.843505
[13]
Poobuaphen N, Chen W, Boos Z, et al. A 1.5-V, 0.7-2.5 GHz CMOS quadrature demodulator for multiband direct-conversion receiver. IEEE J Solid-State Circuits, 2007, 42(8): 1669 doi: 10.1109/JSSC.2007.900294
[14]
Najam Muhammad Amin, Wang Zhigong, Li Zhiqun. An I/Q mixer with an integrated differential quadrature all-pass filter for on-chip quadrature LO signal generation. Journal of Semiconductors, 2015, 36(5): 055001 doi: 10.1088/1674-4926/36/5/055001
[15]
Xu Jian, Zhou Zheng, Wu Yiqiang, et al. A high linearity current mode second IF CMOS mixer for a DRM/DAB receiver. Journal of Semiconductors, 2015, 36(5): 055002 doi: 10.1088/1674-4926/36/5/055002
[16]
Kim N, Aparin V, Larson L E. A resistively degenerated wideband CMOS passive mixer with low noise figure and highⅡP2. IEEE Trans Microw Theory Tech, 2010, 58(4): 820 doi: 10.1109/TMTT.2010.2042644
[17]
Manstretta D, Brandolini M, Svelto F. Second-order intermodulation mechanisms in CMOS downconverters. IEEE J Solid-State Circuits, 2003, 38(3): 394 doi: 10.1109/JSSC.2002.808310
[18]
Liu R, Guo G, Yan Y. High linearity current communicating passive mixer employing a simple resistor bias. Journal of Semiconductors, 2013, 34(3): 035005 doi: 10.1088/1674-4926/34/3/035005
[19]
Le V H, Nguyen H N, Lee I Y, et al. A passive mixer for a wideband TV tuner. IEEE Trans Circuits SystⅡ, 2011, 58(7): 398 http://cn.bing.com/academic/profile?id=2168835075&encoded=0&v=paper_preview&mkt=zh-cn
Fig. 1.  Output voltage level at the input of each amplification stage.

Fig. 2.  The reconfigurable passive mixer with a 2-bits control word (VC, VC1).

Fig. 3.  Schematic of the reconfigurable Gm stage.

Fig. 4.  Switching stage of the passive mixer.

Fig. 5.  (a) The active-R TIA stage and (b) the two stage Miller compensated OTA.

Fig. 6.  (a) Architecture of the divider and (b) the transistor-level realization of the divider.

Fig. 7.  (Color online) Chip photograph of the reconfigurable passive mixer.

Fig. 8.  (Color online) (a) Measured GVC of the proposed mixer with fLO=700 MHz, fRF=700.01–800 MHz. (b) Measured GVC of the proposed mixer with fLO=2300 MHz, fRF=2300.01–2400 MHz.

Fig. 9.  (Color online) Simulated noise figure of the mixer at different gain mode.

Fig. 10.  (Color online) Measured NF at the (a) highest and (b) lowest gain mode.

Fig. 11.  (Color online) (a) Measured 2-tone intermodulation effect. (b) Measured IIP3 of the mixer with fLO=1.5 GHz, fRF1=1505 MHz, and fRF2=1505.5 MHz at the lowest gain mode.

Fig. 12.  (Color online) Measured output wave from the oscilloscope with fLO=1.5 GHz, fRF=1.505 GHz.

Table 1.   Control voltage versus the value of Gm and RTIA.

Table 2.   Gm; RTIA and GVC versus the control voltage.

Table 3.   Performance comparison.

[1]
Lin F, Mak P, Martins R. Wideband receivers: design challenges, tradeoffs and state-of-the-art. Circuits and Systems Magazine, 2015, 15(1): 12 doi: 10.1109/MCAS.2014.2385571
[2]
Murphy D, Mikhemar M, Mirzaei A, et al. Advances in the design of wideband receivers. IEEE Custom Integrated Circuits Conference (CICC), 2013: 1 http://cn.bing.com/academic/profile?id=1976640284&encoded=0&v=paper_preview&mkt=zh-cn
[3]
Abidi A. The path to SDR receiver. IEEE J Solid-State Circuits, 2007, 42(5): 954 doi: 10.1109/JSSC.2007.894307
[4]
Chen R, Hashemi H. A 0.5-to-3 GHz software-defined radio receiver using discrete-time RF signal processing. IEEE J Solid State Circuits, 2014, 49 (5): 1097 doi: 10.1109/JSSC.2014.2303791
[5]
El-Nozahi M, Sánchez-Sinencio E, Entesari K. Power-aware multiband multistandard CMOS receiver system-level budgeting. IEEE Trans Circuits Syst-Ⅱ, 2009, 56(7): 570 http://cn.bing.com/academic/profile?id=2104191916&encoded=0&v=paper_preview&mkt=zh-cn
[6]
Bao Kuan, Fan Xiangning, Li Wei, et al. A wideband current-commutating passive mixer for multi-standard receivers in a 0.18μm CMOS. Journal of Semiconductors, 2013, 34(1): 015003 doi: 10.1088/1674-4926/34/1/015003
[7]
Wu Chenjian, Li Zhiqun, Sun Ge. A low voltage low power up-conversion mixer for WSN application. Journal of Semiconductors, 2014, 35(4): 045006 doi: 10.1088/1674-4926/35/4/045006
[8]
Tang Xusheng, Wang Xiaoyu, Yang Jiang, et al. A high linearity dual-band mixer for IMT-A and UWB systems. Journal of Semiconductors, 2014, 35(11): 115006 doi: 10.1088/1674-4926/35/11/115006
[9]
Huang Y, Li W, Hu S, et al. A High-linearity WCDMA/GSM reconfigurable transceiver in 0.13μm CMOS. IEEE Trans Microw Theory Tech, 2013, 61(1): 204 doi: 10.1109/TMTT.2012.2222913
[10]
Wang X, Sturm J, Yan N, et al. 0.6-3 GHz wideband receiver RF front-end with a feedforward noise and distortion cancellation resistive-feedback LNA. IEEE Trans Microw Theory Tech, 2012, 60(2): 387 doi: 10.1109/TMTT.2011.2176138
[11]
Liempd B V, Borremans J, Martens E, et al. A 0.9 V 0.4-6 GHz harmonic recombination SDR receiver in 28 nm CMOS with HR3/HR5 andⅡP2 calibration. IEEE J Solid State Circuits, 2014, 49(8): 1815 doi: 10.1109/JSSC.2014.2321148
[12]
Brandolini M, Rossi P, Manstretta D, et al. Toward multistandard mobile terminals-fully integrated receivers requirements and architectures. IEEE Trans Microw Theory Tech, 2005, 53(3): 1026 doi: 10.1109/TMTT.2005.843505
[13]
Poobuaphen N, Chen W, Boos Z, et al. A 1.5-V, 0.7-2.5 GHz CMOS quadrature demodulator for multiband direct-conversion receiver. IEEE J Solid-State Circuits, 2007, 42(8): 1669 doi: 10.1109/JSSC.2007.900294
[14]
Najam Muhammad Amin, Wang Zhigong, Li Zhiqun. An I/Q mixer with an integrated differential quadrature all-pass filter for on-chip quadrature LO signal generation. Journal of Semiconductors, 2015, 36(5): 055001 doi: 10.1088/1674-4926/36/5/055001
[15]
Xu Jian, Zhou Zheng, Wu Yiqiang, et al. A high linearity current mode second IF CMOS mixer for a DRM/DAB receiver. Journal of Semiconductors, 2015, 36(5): 055002 doi: 10.1088/1674-4926/36/5/055002
[16]
Kim N, Aparin V, Larson L E. A resistively degenerated wideband CMOS passive mixer with low noise figure and highⅡP2. IEEE Trans Microw Theory Tech, 2010, 58(4): 820 doi: 10.1109/TMTT.2010.2042644
[17]
Manstretta D, Brandolini M, Svelto F. Second-order intermodulation mechanisms in CMOS downconverters. IEEE J Solid-State Circuits, 2003, 38(3): 394 doi: 10.1109/JSSC.2002.808310
[18]
Liu R, Guo G, Yan Y. High linearity current communicating passive mixer employing a simple resistor bias. Journal of Semiconductors, 2013, 34(3): 035005 doi: 10.1088/1674-4926/34/3/035005
[19]
Le V H, Nguyen H N, Lee I Y, et al. A passive mixer for a wideband TV tuner. IEEE Trans Circuits SystⅡ, 2011, 58(7): 398 http://cn.bing.com/academic/profile?id=2168835075&encoded=0&v=paper_preview&mkt=zh-cn
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2847 Times PDF downloads: 30 Times Cited by: 0 Times

    History

    Received: 07 December 2015 Revised: 23 February 2016 Online: Published: 01 August 2016

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiangning Fan, Jian Tao, Kuan Bao, Zhigong Wang. A reconfigurable passive mixer for multimode multistandard receivers in 0.18 μm CMOS[J]. Journal of Semiconductors, 2016, 37(8): 085001. doi: 10.1088/1674-4926/37/8/085001 X N Fan, J Tao, K Bao, Z G Wang. A reconfigurable passive mixer for multimode multistandard receivers in 0.18 μm CMOS[J]. J. Semicond., 2016, 37(8): 085001. doi: 10.1088/1674-4926/37/8/085001.Export: BibTex EndNote
      Citation:
      Xiangning Fan, Jian Tao, Kuan Bao, Zhigong Wang. A reconfigurable passive mixer for multimode multistandard receivers in 0.18 μm CMOS[J]. Journal of Semiconductors, 2016, 37(8): 085001. doi: 10.1088/1674-4926/37/8/085001

      X N Fan, J Tao, K Bao, Z G Wang. A reconfigurable passive mixer for multimode multistandard receivers in 0.18 μm CMOS[J]. J. Semicond., 2016, 37(8): 085001. doi: 10.1088/1674-4926/37/8/085001.
      Export: BibTex EndNote

      A reconfigurable passive mixer for multimode multistandard receivers in 0.18 μm CMOS

      doi: 10.1088/1674-4926/37/8/085001
      Funds:

      Project supported by the State Key Development Program for Basic Research of China (No. 2010CB327404)

      State Key Development Program for Basic Research of China 2010CB327404

      More Information
      • Corresponding author: Tao Jian, Email: jiantao@seu.edu.cn
      • Received Date: 2015-12-07
      • Revised Date: 2016-02-23
      • Published Date: 2016-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return