SEMICONDUCTOR INTEGRATED CIRCUITS

A monolithic integrated low-voltage deep brain stimulator with wireless power and data transmission

Zhang Zhang, Ye Tan, Jianmin Zeng, Xu Han, Xin Cheng and Guangjun Xie

+ Author Affiliations

 Corresponding author: Xie Guangjun,gjxie8005@hfut.edu.cn

PDF

Abstract: A monolithic integrated low-voltage deep brain stimulator with wireless power and data transmission is presented. Data and power are transmitted to the stimulator by mutual inductance coupling, while the in-vitro controller encodes the stimulation parameters. The stimulator integrates the digital control module and can generate the bipolar current with equal amplitude in four channels. In order to reduce power consumption, a novel controlled threshold voltage cancellation rectifier is proposed in this paper to provide the supply voltage of the stimulator. The monolithic stimulator was fabricated in a SMIC 0.18 μm 1-poly 6-metal mixed-signal CMOS process, occupying 0.23 mm2, and consumes 180 μW on average. Compared with previously published stimulators, this design has advantages of large stimulated current (0-0.8 mA) with the double low-voltage supply (1.8 and 3.3 V), and high-level integration.

Key words: deep brain stimulatorwireless transmissionmonolithicbipolar current



[1]
Lee H M, Kwon K Y, Li W, et al. A power-efficient switched-capacitor stimulating system for electrical/optical deep-brain stimulation. IEEE J Solid-State Circuits, 2015, 50(1): 360 doi: 10.1109/JSSC.2014.2355814
[2]
Kwon K Y, Lee H M, Ghovanloo M, et al. A wireless slanted optrode array with integrated micro leds for optogenetics. IEEE International Conference on Micro Electro Mechanical Systems, 2014: 813 http://cn.bing.com/academic/profile?id=1998776156&encoded=0&v=paper_preview&mkt=zh-cn
[3]
Noorsal E, Sooksood K, Xu H, et al. A neural stimulator frontend with high-voltage compliance and programmable pulse shape for epiretinal implants. IEEE J Solid-State Circuits, 2012, 47(1): 244 doi: 10.1109/JSSC.2011.2164667
[4]
Xu H, Noorsal E, Sooksood K, et al. A multichannel neurostimulator with transcutaneous closed-loop power control and self-adaptive supply. IEEE Eur Solid-State Circuits Conf (ESH. SCIRC), 2012: 309 http://cn.bing.com/academic/profile?id=1971046436&encoded=0&v=paper_preview&mkt=zh-cn
[5]
Chen Kuanfu, Yang Zhi, Hoang Linh, et al. An integrated 256-channel epiretinal prosthesis. IEEE J Solid-State Circuits, 2010, 45(9): 1946 doi: 10.1109/JSSC.2010.2055371
[6]
Wang G, Wang P, Tang Y, et al. Analysis of dual band power and data telemetry for biomedical implants. IEEE Trans Biomed Circuits Syst, 2012, 6(3): 208 doi: 10.1109/TBCAS.2011.2171958
[7]
Kiani M, Ghovanloo M. A 20 Mb/s pulse harmonic modulation transceiver for wideband near-field data transmission. IEEE Trans Circuits Syst Ⅱ, 2013, 60(7): 382 http://cn.bing.com/academic/profile?id=2085440461&encoded=0&v=paper_preview&mkt=zh-cn
[8]
Lee H M, Park H, Ghovanloo M. A power-efficient wireless system with adaptive supply control for deep brain stimulation. IEEE J Solid-State Circuits, 2013, 48(9): 2203 doi: 10.1109/JSSC.2013.2266862
[9]
Kiani M, Ghovanloo M. A 13.56-Mbps pulse delay modulation based transceiver for simultaneous near-field data and power transmission. IEEE Transactions on Biomedical Circuits and Systems, 2015, 9(1): 1 doi: 10.1109/TBCAS.2014.2304956
[10]
Han Xu, Zhang Zhang, Tan Ye, et al. A 13.56 MHz low-voltage RF-DC rectifier with controlled Vth cancellation technique. IEEE International Symposium on Radio-Frequency Integration Technology, 2014: TH-IF-4 http://cn.bing.com/academic/profile?id=1965316738&encoded=0&v=paper_preview&mkt=zh-cn
[11]
Mohanasankar S, Liu W, Mark S, et al. A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic device. IEEE J Solid-State Circuits, 2005, 40(3): 763 doi: 10.1109/JSSC.2005.843630
[12]
Constandinou T G, Georgiou J, Toumazou C. A partial-current steering biphasic stimulation driver for vestibular prostheses. IEEE Trans Biomedical Circuits Syst, 2008, 2(2): 106 doi: 10.1109/TBCAS.2008.927238
[13]
Mounaim F, Sawan M. Toward a fully integrated neurostimulator with inductive power recovery front-end. IEEE Trans Biomedical Circuits and Systems, 2012, 6(4): 309 doi: 10.1109/TBCAS.2012.2185796
[14]
Williams I, Constandinou T G. An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis. IEEE Trans Biomedical Circuits and Systems, 2013, 7(2): 129 doi: 10.1109/TBCAS.2013.2256906
[15]
Wang Yuan, Zhang Xu, Liu Ming. An implantable neurostimulator with an integrated high-voltage inductive power recovery frontend. Journal of Semiconductors, 2014, 35(10): 105012 doi: 10.1088/1674-4926/35/10/105012
Fig. 1.  Stimulator system structure

Fig. 2.  Circuit of in-vivo stimulator

Fig. 3.  Controlled threshold-eliminating rectifier

Fig. 4.  Biphasic current control module

Fig. 5.  (a) Micrograph of the proposed chip. (b) The test board of the stimulator

Fig. 6.  Measured waveforms of the stimulator. (a) Output voltage is 0.54 V. (b) Output voltage is 0.7 V.

Table 1.   Performance comparison

[1]
Lee H M, Kwon K Y, Li W, et al. A power-efficient switched-capacitor stimulating system for electrical/optical deep-brain stimulation. IEEE J Solid-State Circuits, 2015, 50(1): 360 doi: 10.1109/JSSC.2014.2355814
[2]
Kwon K Y, Lee H M, Ghovanloo M, et al. A wireless slanted optrode array with integrated micro leds for optogenetics. IEEE International Conference on Micro Electro Mechanical Systems, 2014: 813 http://cn.bing.com/academic/profile?id=1998776156&encoded=0&v=paper_preview&mkt=zh-cn
[3]
Noorsal E, Sooksood K, Xu H, et al. A neural stimulator frontend with high-voltage compliance and programmable pulse shape for epiretinal implants. IEEE J Solid-State Circuits, 2012, 47(1): 244 doi: 10.1109/JSSC.2011.2164667
[4]
Xu H, Noorsal E, Sooksood K, et al. A multichannel neurostimulator with transcutaneous closed-loop power control and self-adaptive supply. IEEE Eur Solid-State Circuits Conf (ESH. SCIRC), 2012: 309 http://cn.bing.com/academic/profile?id=1971046436&encoded=0&v=paper_preview&mkt=zh-cn
[5]
Chen Kuanfu, Yang Zhi, Hoang Linh, et al. An integrated 256-channel epiretinal prosthesis. IEEE J Solid-State Circuits, 2010, 45(9): 1946 doi: 10.1109/JSSC.2010.2055371
[6]
Wang G, Wang P, Tang Y, et al. Analysis of dual band power and data telemetry for biomedical implants. IEEE Trans Biomed Circuits Syst, 2012, 6(3): 208 doi: 10.1109/TBCAS.2011.2171958
[7]
Kiani M, Ghovanloo M. A 20 Mb/s pulse harmonic modulation transceiver for wideband near-field data transmission. IEEE Trans Circuits Syst Ⅱ, 2013, 60(7): 382 http://cn.bing.com/academic/profile?id=2085440461&encoded=0&v=paper_preview&mkt=zh-cn
[8]
Lee H M, Park H, Ghovanloo M. A power-efficient wireless system with adaptive supply control for deep brain stimulation. IEEE J Solid-State Circuits, 2013, 48(9): 2203 doi: 10.1109/JSSC.2013.2266862
[9]
Kiani M, Ghovanloo M. A 13.56-Mbps pulse delay modulation based transceiver for simultaneous near-field data and power transmission. IEEE Transactions on Biomedical Circuits and Systems, 2015, 9(1): 1 doi: 10.1109/TBCAS.2014.2304956
[10]
Han Xu, Zhang Zhang, Tan Ye, et al. A 13.56 MHz low-voltage RF-DC rectifier with controlled Vth cancellation technique. IEEE International Symposium on Radio-Frequency Integration Technology, 2014: TH-IF-4 http://cn.bing.com/academic/profile?id=1965316738&encoded=0&v=paper_preview&mkt=zh-cn
[11]
Mohanasankar S, Liu W, Mark S, et al. A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic device. IEEE J Solid-State Circuits, 2005, 40(3): 763 doi: 10.1109/JSSC.2005.843630
[12]
Constandinou T G, Georgiou J, Toumazou C. A partial-current steering biphasic stimulation driver for vestibular prostheses. IEEE Trans Biomedical Circuits Syst, 2008, 2(2): 106 doi: 10.1109/TBCAS.2008.927238
[13]
Mounaim F, Sawan M. Toward a fully integrated neurostimulator with inductive power recovery front-end. IEEE Trans Biomedical Circuits and Systems, 2012, 6(4): 309 doi: 10.1109/TBCAS.2012.2185796
[14]
Williams I, Constandinou T G. An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis. IEEE Trans Biomedical Circuits and Systems, 2013, 7(2): 129 doi: 10.1109/TBCAS.2013.2256906
[15]
Wang Yuan, Zhang Xu, Liu Ming. An implantable neurostimulator with an integrated high-voltage inductive power recovery frontend. Journal of Semiconductors, 2014, 35(10): 105012 doi: 10.1088/1674-4926/35/10/105012
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2565 Times PDF downloads: 17 Times Cited by: 0 Times

    History

    Received: 23 February 2016 Revised: 05 March 2016 Online: Published: 01 September 2016

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zhang Zhang, Ye Tan, Jianmin Zeng, Xu Han, Xin Cheng, Guangjun Xie. A monolithic integrated low-voltage deep brain stimulator with wireless power and data transmission[J]. Journal of Semiconductors, 2016, 37(9): 095003. doi: 10.1088/1674-4926/37/9/095003 Z Zhang, Y Tan, J M Zeng, X Han, X Cheng, G J Xie. A monolithic integrated low-voltage deep brain stimulator with wireless power and data transmission[J]. J. Semicond., 2016, 37(9): 095003. doi: 10.1088/1674-4926/37/9/095003.Export: BibTex EndNote
      Citation:
      Zhang Zhang, Ye Tan, Jianmin Zeng, Xu Han, Xin Cheng, Guangjun Xie. A monolithic integrated low-voltage deep brain stimulator with wireless power and data transmission[J]. Journal of Semiconductors, 2016, 37(9): 095003. doi: 10.1088/1674-4926/37/9/095003

      Z Zhang, Y Tan, J M Zeng, X Han, X Cheng, G J Xie. A monolithic integrated low-voltage deep brain stimulator with wireless power and data transmission[J]. J. Semicond., 2016, 37(9): 095003. doi: 10.1088/1674-4926/37/9/095003.
      Export: BibTex EndNote

      A monolithic integrated low-voltage deep brain stimulator with wireless power and data transmission

      doi: 10.1088/1674-4926/37/9/095003
      Funds:

      Fundamental Research Funds for the Central Universities 2015HGZX0026

      National Natural Science Foundation of China 61401137

      Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences IIMDKFJJ-13-06

      Project supported by the National Natural Science Foundation of China (Nos. 61404043, 61401137), the Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences (Nos. IIMDKFJJ-13-06, IIMDKFJJ-14-03),and the Fundamental Research Funds for the Central Universities (No. 2015HGZX0026).

      National Natural Science Foundation of China 61404043

      Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences IIMDKFJJ-14-03

      More Information
      • Corresponding author: Xie Guangjun,gjxie8005@hfut.edu.cn
      • Received Date: 2016-02-23
      • Revised Date: 2016-03-05
      • Published Date: 2016-09-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return