SPECIAL TOPIC ON PEROVSKITE SOLAR CELLS

Recent progress in stability of perovskite solar cells

Xiaojun Qin1, 2, Zhiguo Zhao1, 2, Yidan Wang1, 2, Junbo Wu1, 2, Qi Jiang3 and Jingbi You3, 4,

+ Author Affiliations

 Corresponding author: Jingbi You, Email:jyou@semi.ac.cn

PDF

Abstract: Perovskite solar cells have attracted significant attention in just the past few years in solar cell research fields, where the power conversion efficiency was beyond 22. 1%. Now, the most important challenge for perovskite solar cells in practical applications is the stability issue. In this mini-review, we will summarize the degradation mechanism of perovskite solar cells, including the perovskite material itself and also the interfaces. While we also provide our opinion on improving the stability of perovskite solar cells.

Key words: perovskitesolar cellsstability



[1]
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131: 6050 doi: 10.1021/ja809598r
[2]
Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2: 591 https://www.researchgate.net/profile/Jacques-E_Moser/publication/230716542_Lead_iodide_perovskite_sensitized_all-solid-state_submicron_thin_film_mesoscopic_solar_cell_with_efficiency_exceeding_9/links/09e41506f09cb81b07000000.pdf
[3]
Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338: 643 doi: 10.1126/science.1228604
[4]
Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499: 316 doi: 10.1038/nature12340
[5]
Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for highperformance inorganic-organic hybrid perovskite solar cells. Nat Mater, 2014, 13: 897 doi: 10.1038/nmat4014
[6]
Jeon N J, Noh J H, Yang W S, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517: 476 doi: 10.1038/nature14133
[7]
Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348: 1234 doi: 10.1126/science.aaa9272
[8]
National renewable energy laboratory best research-cell efficiencies. www.nrel.gov/ncpv/images/efficiency_chart.jpg, 2016
[9]
Christians J A, Herrera P, Kamat P V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J Am Chem Soc, 2015, 137: 1530 doi: 10.1021/ja511132a
[10]
Habisreutinger S N, Leijtens T, Eperon E, et al. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett, 2014, 14: 5561 doi: 10.1021/nl501982b
[11]
Supasai T, Rujisamphan N, Ullrich K, et al. Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers. Appl Phys Lett, 2013, 103: 183906 doi: 10.1063/1.4826116
[12]
Conings B, Drijkoningen J, Gauquelin N, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv Energy Mater, 2015, 5: 1500477 doi: 10.1002/aenm.201500477
[13]
Chen Q, Zhou H P, Song T B, et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high perfor mance solar cells. Nano Lett, 2014, 14: 4158 doi: 10.1021/nl501838y
[14]
Azpiroz J M, Mosconi E, Bisquert J, et al. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ Sci, 2015, 8: 2118 doi: 10.1039/C5EE01265A
[15]
Berhe T A, Su W N, Chen C H, et al. Organometal halide perovskite solar cells: degradation and stability. Energy Environ Sci, 2016, 9: 323 doi: 10.1039/C5EE02733K
[16]
You J B, Meng L, Song T B, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotech, 2016, 11: 75 http://cn.bing.com/academic/profile?id=cfa525fe83a9f619904826ac20a799fb&encoded=0&v=paper_preview&mkt=zh-cn
[17]
Kim J H, Liang P W, Williams S T, et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv Mater, 2015, 27: 695 doi: 10.1002/adma.201404189
[18]
Ono L K, Raga S R, Remeika M, et al. Pinhole-free hole transport layers significantly improve the stability of MAPbI3-based perovskite solar cells under operating conditions. J Mater Chem A, 2015, 3: 15451 doi: 10.1039/C5TA03443D
[19]
Leijtens T, Eperon G E, Pathak S, et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat Commun, 2013, 4: 2885 https://www.researchgate.net/profile/Antonio_Abate/publication/259154549_Overcoming_ultraviolet_light_instability_of_sensitized_TiO2_with_meso-superstructured_organometal_tri-halide_perovskite_solar_cells/links/0a85e52e256d97db57000000.pdf?origin=publication_list
[20]
Nagabhushana G P, Shivaramaiah R, Navrotsky A. Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites. PNAS, 2016, 113: 7717 doi: 10.1073/pnas.1607850113
[21]
Eperon G E, Stranks S D, Menelaou C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 2014, 7: 982 doi: 10.1039/c3ee43822h
[22]
Li Z, Yang M J, Park J S, et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem Mater, 2016, 28: 284 doi: 10.1021/acs.chemmater.5b04107
[23]
Lee J W, Kim D H, Kim H S, et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv Energy Mater, 2015, 5: 1501310 doi: 10.1002/aenm.201501310
[24]
Saliba M, Matsui T, Seo J Y, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci, 2016, 9: 1989 doi: 10.1039/C5EE03874J
[25]
Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354: 206 doi: 10.1126/science.aah5557
[26]
Choi H, Jeong J, Kim H B, et al. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy, 2014, 7: 80 doi: 10.1016/j.nanoen.2014.04.017
[27]
Mei A, Li X, Liu L, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345: 295 doi: 10.1126/science.1254763
[28]
Smith I C, Hoke E T, Solis-Ibarra D. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew Chem, 2014, 126: 11414 doi: 10.1002/ange.201406466
[29]
Quan L N, Yuan M J, Comin R, et al. Ligand-stabilized reduceddimensionality perovskites. J Am Chem Soc, 2016, 138: 2649 doi: 10.1021/jacs.5b11740
[30]
Tsai H, Nie W Y, Jean-Christophe B, et al. High-efficiency twodimensional Ruddlesden-Popper perovskite solar cells. Nature, 2016, 536: 312 doi: 10.1038/nature18306
[31]
Colella S, Mosconi E, Fedeli P, et al. MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Chem Mater, 2013, 25: 4613 doi: 10.1021/cm402919x
[32]
You J, Hong Z, Yang Y, et al. Low-temperature solutionprocessed perovskite solar cells with high efficiency and flexibility. ACS Nano, 2014, 8: 1674 doi: 10.1021/nn406020d
[33]
Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett, 2013, 13: 1764 doi: 10.1021/nl400349b
[34]
Jeon N J, Noh J H, Yang W S, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517: 476 doi: 10.1038/nature14133
[35]
Liu Y S, Hong Z R, Chen Q, et al. Perovskite solar cells employing dopant-free organic hole transport materials with tunable energy levels. Adv Mater, 2016, 28: 440 doi: 10.1002/adma.v28.3
[36]
Liu Y S, Chen Q, Duan H S, et al. A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells. J Mater Chem A, 2015, 3: 11940 doi: 10.1039/C5TA02502H
[37]
Qin P, Tanaka S, Ito S, et al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat Commun, 2014, 5: 3834 http://repository.kaust.edu.sa/kaust/handle/10754/597000
[38]
Christians J A, Fung R C M, Kamat P V. An inorganic hole conductor for organo-lead halide perovskite solar cells improved hole conductivity with copper iodide. J Am Chem Soc, 2014, 136: 758 doi: 10.1021/ja411014k
[39]
Jeng J Y, Chen K C, Chiang T Y, et al. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planarheterojunction hybrid solar cells. Adv Mater, 2014, 26: 4107 doi: 10.1002/adma.v26.24
[40]
Kim J H, Liang P W, Williams S T, et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv Mater, 2015, 27: 695 doi: 10.1002/adma.201404189
[41]
Park J H, Seo J, Park S, et al. Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv Mater, 2015, 27: 4013 doi: 10.1002/adma.201500523
[42]
Ye S, Sun W, Li Y, et al. CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%. Nano Lett, 2015, 15: 3723 doi: 10.1021/acs.nanolett.5b00116
[43]
Liu D Y, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics, 2014, 8: 133 http://cn.bing.com/academic/profile?id=e544adea4a5a7d33adfd0597fb77b8d6&encoded=0&v=paper_preview&mkt=zh-cn
[44]
Dong Q, Shi Y T, Wang K, et al. Insight into perovskite solar cells based on SnO2 compact electron-selective layer. J Phys Chem C, 2015, 119: 10212 doi: 10.1021/acs.jpcc.5b00541?selectedTab=citation&volume=119
[45]
Song J, Zheng E, Bian J, et al. Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells. J Mater Chem A, 2015, 3: 10837 doi: 10.1039/C5TA01207D
[46]
Li Y, Zhu J, Huang Y, et al. Mesoporous SnO2 nanoparticle films as electron transporting material in perovskite solar cells. RSC Adv, 2015, 5: 28424 doi: 10.1039/C5RA01540E
[47]
Ke W, Fang G J, Liu Q, et al. Low-temperature solutionprocessed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J Am Chem Soc, 2015;137: 6730 doi: 10.1021/jacs.5b01994
[48]
Baena J P C, Steier L, Tress W, et al. A highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ Sci, 2015, 8: 2928 doi: 10.1039/C5EE02608C
[49]
Jiang Q, Zhang L Q, Wang H L, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat Energy, 2016, 1: 16117 doi: 10.1038/nenergy.2016.117
[50]
Chen W, Wu Y Z, Yue Y F, et al., Efficient and stable largearea perovskite solar cells with inorganic charge extraction layers. Science, 2015, 350: 944 doi: 10.1126/science.aad1015
[51]
Zhu Z, Bai Y, Liu X, et al., Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer. Adv Mater, 2016, 28: 6478 doi: 10.1002/adma.201600619
Fig. 1.  (Color online) (a) Photo illustrating the visible degradation of the perovskite layer. The color shifts from almost black to yellow for all organic HTLs except for the films covered with PMMA only or a composite of carbon nanotubes and PMMA[10]. (b) Scanning electron micrographs of perovskite films on planar PEDOT layers (i. e. , no mesoporous scaffold) to highlight morphological changes undergone due to humidity exposure at room temperature in the dark[9].

Fig. 2.  Scan electron microscopy image of ITO/TiO2/perovskite samples that were degraded in different atmospheres for 24 h at 85℃[12].

Fig. 3.  Devices image after storage in ambient air for 10 days. (a) Top Al electrode side: first row (left) perovskite/Al, (right) perovskite/PCBM(40 nm)/Al; second row (left) perovskite/PCBM (75 nm)/Al, (right) perovskite/PCBM (135 nm)/Al; Third row (left) perovskite/ZnO (30 nm)/Al, (right) perovskite/ZnO (70 nm)/Al. (b) Back side of the devices. It can be easily found that the perovksite/Al, perovskite/PCBM (40 nm)/Al, and perovskite/PCBM (75 nm)/Al are seriously degraded, and perovskite/PCBM (135 nm)/Al are slightly degraded. While Perovskite/Al with ZnO showed their original status (The third row in Figs. 3(a) and 3(b)). The strong acid of HI from decomposition of perovskite by water (CH3NH3PbI3 PbI2+CH3NH3I PbI2+CH3NH2+HI) occurs can etch the metal like Al around the perovskite layer[16].

Fig. 4.  Enthalpy formation of MAPbI3 as a function of (a) tolerance factor and (b) lead-halide bond strength (open circles) and electronegativity (solid circles)[20].

Fig. 5.  (Color online) (a) Correlations between tolerance factor and crystal structure of perovskite materials. Shelf life stability of FAPbI3 and FA0. 85Cs0. 15PbI3 solar cells: J-V curves of (b) FAPb3 and (c) FA0. 85Cs0. 15PbI3 solar cells at 0-15 days of storage under 15% RH[22].

Fig. 6.  (Color online) (a) Crystal structures of the 3D perovskite MAPbI3 and (b) the 2D perovskite (PEA)2(MA)2Pb3I10. (c) PXRD patterns of films of (PEA)2(MA)2Pb3I10 (1), MAPbI3 formed from PbI2 (2a), and MAPbI3 formed from PbCl2 (2b), which were exposed to 52% relative humidity. Annealing of films of 2a (15 min) and 2b (80 min) was conducted at 100℃ prior to humidity exposure. Asterisks denote the major reflections from PbI2[28].

Fig. 7.  (Color online) Stability measurements on planar solar cells. (a) and (c) Photostability tests under constant AM1. 5G illumination for 2D ((BA)2(MA)3Pb4I13; red) and 3D (MAPbI3; blue) perovskite devices without (a) and with (c) encapsulation. (b) and (d) Humidity stability tests under 65% relative humidity at in a humidity chamber for 2D; red) and 3D (MAPbI3; blue) perovskite devices without (b) and with (d) encapsulation. PCE, power conversion efficiency[30].

Fig. 8.  (Color online) (a) Power conversion efficiency variation of the heterojunction solar cells based on MAPb(I1-xBr3)x(x = 0, 0. 06, 0. 20, 0. 29) with time stored in air at room temperature without encapsulation. The humidity was maintained at 35%, and the cells were exposed to a humidity of 55% for one day on the fourth day to investigate performance variation at high humidity [33]. (b) Photographs of inorganic-organic hybrid halide powders. Photographs show the colour of the as-prepared MAPbI3, annealed FAPbI3 at 170℃, FAPbI3, (FAPbI3)1-x(MAPbI3)x, (FAPbI3)1-x(FAPbBr3)x, and (FAPbI3)1-x(MAPbBr3)x powders with x=0. 15 (from left to right). The (FAPbI3)1-x(MAPbBr3)x powder is the only black powder among the as-prepared FAPbI3-based materials[34].

Fig. 9.  (Color online) (a) Perovskite solar cells adopting all metal oxide as charge transport layers, and (b) performance degradation in ambient air for 60 days for the devices using organic charge transport layers or inorganic metal oxide charge transport layers[16]. (c) Scheme of the cell configuration highlighting the doped charge carrier extraction layers and (d) stability of sealed cells under simulated solar light (AM 1. 5, 100 mW/cm2, using a 420 nm UV light cut-off filter, surface temperature of the cell: 45 to 50 ° C, bias potential = 0 V)[50].

Fig. 10.  (Color online) (a) Schematic drawing showing the cross section of the triple-layer perovskite-based fully printable mesoscopic solar cell, and (b) the devices stability under light illumination[27].

[1]
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131: 6050 doi: 10.1021/ja809598r
[2]
Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2: 591 https://www.researchgate.net/profile/Jacques-E_Moser/publication/230716542_Lead_iodide_perovskite_sensitized_all-solid-state_submicron_thin_film_mesoscopic_solar_cell_with_efficiency_exceeding_9/links/09e41506f09cb81b07000000.pdf
[3]
Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338: 643 doi: 10.1126/science.1228604
[4]
Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499: 316 doi: 10.1038/nature12340
[5]
Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for highperformance inorganic-organic hybrid perovskite solar cells. Nat Mater, 2014, 13: 897 doi: 10.1038/nmat4014
[6]
Jeon N J, Noh J H, Yang W S, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517: 476 doi: 10.1038/nature14133
[7]
Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348: 1234 doi: 10.1126/science.aaa9272
[8]
National renewable energy laboratory best research-cell efficiencies. www.nrel.gov/ncpv/images/efficiency_chart.jpg, 2016
[9]
Christians J A, Herrera P, Kamat P V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J Am Chem Soc, 2015, 137: 1530 doi: 10.1021/ja511132a
[10]
Habisreutinger S N, Leijtens T, Eperon E, et al. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett, 2014, 14: 5561 doi: 10.1021/nl501982b
[11]
Supasai T, Rujisamphan N, Ullrich K, et al. Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers. Appl Phys Lett, 2013, 103: 183906 doi: 10.1063/1.4826116
[12]
Conings B, Drijkoningen J, Gauquelin N, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv Energy Mater, 2015, 5: 1500477 doi: 10.1002/aenm.201500477
[13]
Chen Q, Zhou H P, Song T B, et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high perfor mance solar cells. Nano Lett, 2014, 14: 4158 doi: 10.1021/nl501838y
[14]
Azpiroz J M, Mosconi E, Bisquert J, et al. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ Sci, 2015, 8: 2118 doi: 10.1039/C5EE01265A
[15]
Berhe T A, Su W N, Chen C H, et al. Organometal halide perovskite solar cells: degradation and stability. Energy Environ Sci, 2016, 9: 323 doi: 10.1039/C5EE02733K
[16]
You J B, Meng L, Song T B, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotech, 2016, 11: 75 http://cn.bing.com/academic/profile?id=cfa525fe83a9f619904826ac20a799fb&encoded=0&v=paper_preview&mkt=zh-cn
[17]
Kim J H, Liang P W, Williams S T, et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv Mater, 2015, 27: 695 doi: 10.1002/adma.201404189
[18]
Ono L K, Raga S R, Remeika M, et al. Pinhole-free hole transport layers significantly improve the stability of MAPbI3-based perovskite solar cells under operating conditions. J Mater Chem A, 2015, 3: 15451 doi: 10.1039/C5TA03443D
[19]
Leijtens T, Eperon G E, Pathak S, et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat Commun, 2013, 4: 2885 https://www.researchgate.net/profile/Antonio_Abate/publication/259154549_Overcoming_ultraviolet_light_instability_of_sensitized_TiO2_with_meso-superstructured_organometal_tri-halide_perovskite_solar_cells/links/0a85e52e256d97db57000000.pdf?origin=publication_list
[20]
Nagabhushana G P, Shivaramaiah R, Navrotsky A. Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites. PNAS, 2016, 113: 7717 doi: 10.1073/pnas.1607850113
[21]
Eperon G E, Stranks S D, Menelaou C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 2014, 7: 982 doi: 10.1039/c3ee43822h
[22]
Li Z, Yang M J, Park J S, et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem Mater, 2016, 28: 284 doi: 10.1021/acs.chemmater.5b04107
[23]
Lee J W, Kim D H, Kim H S, et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv Energy Mater, 2015, 5: 1501310 doi: 10.1002/aenm.201501310
[24]
Saliba M, Matsui T, Seo J Y, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci, 2016, 9: 1989 doi: 10.1039/C5EE03874J
[25]
Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354: 206 doi: 10.1126/science.aah5557
[26]
Choi H, Jeong J, Kim H B, et al. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy, 2014, 7: 80 doi: 10.1016/j.nanoen.2014.04.017
[27]
Mei A, Li X, Liu L, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345: 295 doi: 10.1126/science.1254763
[28]
Smith I C, Hoke E T, Solis-Ibarra D. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew Chem, 2014, 126: 11414 doi: 10.1002/ange.201406466
[29]
Quan L N, Yuan M J, Comin R, et al. Ligand-stabilized reduceddimensionality perovskites. J Am Chem Soc, 2016, 138: 2649 doi: 10.1021/jacs.5b11740
[30]
Tsai H, Nie W Y, Jean-Christophe B, et al. High-efficiency twodimensional Ruddlesden-Popper perovskite solar cells. Nature, 2016, 536: 312 doi: 10.1038/nature18306
[31]
Colella S, Mosconi E, Fedeli P, et al. MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Chem Mater, 2013, 25: 4613 doi: 10.1021/cm402919x
[32]
You J, Hong Z, Yang Y, et al. Low-temperature solutionprocessed perovskite solar cells with high efficiency and flexibility. ACS Nano, 2014, 8: 1674 doi: 10.1021/nn406020d
[33]
Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett, 2013, 13: 1764 doi: 10.1021/nl400349b
[34]
Jeon N J, Noh J H, Yang W S, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517: 476 doi: 10.1038/nature14133
[35]
Liu Y S, Hong Z R, Chen Q, et al. Perovskite solar cells employing dopant-free organic hole transport materials with tunable energy levels. Adv Mater, 2016, 28: 440 doi: 10.1002/adma.v28.3
[36]
Liu Y S, Chen Q, Duan H S, et al. A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells. J Mater Chem A, 2015, 3: 11940 doi: 10.1039/C5TA02502H
[37]
Qin P, Tanaka S, Ito S, et al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat Commun, 2014, 5: 3834 http://repository.kaust.edu.sa/kaust/handle/10754/597000
[38]
Christians J A, Fung R C M, Kamat P V. An inorganic hole conductor for organo-lead halide perovskite solar cells improved hole conductivity with copper iodide. J Am Chem Soc, 2014, 136: 758 doi: 10.1021/ja411014k
[39]
Jeng J Y, Chen K C, Chiang T Y, et al. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planarheterojunction hybrid solar cells. Adv Mater, 2014, 26: 4107 doi: 10.1002/adma.v26.24
[40]
Kim J H, Liang P W, Williams S T, et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv Mater, 2015, 27: 695 doi: 10.1002/adma.201404189
[41]
Park J H, Seo J, Park S, et al. Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv Mater, 2015, 27: 4013 doi: 10.1002/adma.201500523
[42]
Ye S, Sun W, Li Y, et al. CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%. Nano Lett, 2015, 15: 3723 doi: 10.1021/acs.nanolett.5b00116
[43]
Liu D Y, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics, 2014, 8: 133 http://cn.bing.com/academic/profile?id=e544adea4a5a7d33adfd0597fb77b8d6&encoded=0&v=paper_preview&mkt=zh-cn
[44]
Dong Q, Shi Y T, Wang K, et al. Insight into perovskite solar cells based on SnO2 compact electron-selective layer. J Phys Chem C, 2015, 119: 10212 doi: 10.1021/acs.jpcc.5b00541?selectedTab=citation&volume=119
[45]
Song J, Zheng E, Bian J, et al. Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells. J Mater Chem A, 2015, 3: 10837 doi: 10.1039/C5TA01207D
[46]
Li Y, Zhu J, Huang Y, et al. Mesoporous SnO2 nanoparticle films as electron transporting material in perovskite solar cells. RSC Adv, 2015, 5: 28424 doi: 10.1039/C5RA01540E
[47]
Ke W, Fang G J, Liu Q, et al. Low-temperature solutionprocessed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J Am Chem Soc, 2015;137: 6730 doi: 10.1021/jacs.5b01994
[48]
Baena J P C, Steier L, Tress W, et al. A highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ Sci, 2015, 8: 2928 doi: 10.1039/C5EE02608C
[49]
Jiang Q, Zhang L Q, Wang H L, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat Energy, 2016, 1: 16117 doi: 10.1038/nenergy.2016.117
[50]
Chen W, Wu Y Z, Yue Y F, et al., Efficient and stable largearea perovskite solar cells with inorganic charge extraction layers. Science, 2015, 350: 944 doi: 10.1126/science.aad1015
[51]
Zhu Z, Bai Y, Liu X, et al., Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer. Adv Mater, 2016, 28: 6478 doi: 10.1002/adma.201600619
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 7421 Times PDF downloads: 164 Times Cited by: 0 Times

    History

    Received: 15 November 2016 Revised: 03 December 2016 Online: Published: 01 January 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiaojun Qin, Zhiguo Zhao, Yidan Wang, Junbo Wu, Qi Jiang, Jingbi You. Recent progress in stability of perovskite solar cells[J]. Journal of Semiconductors, 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002 X J Qin, Z G Zhao, Y D Wang, J B Wu, Q Jiang, J B You. Recent progress in stability of perovskite solar cells[J]. J. Semicond., 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002.Export: BibTex EndNote
      Citation:
      Xiaojun Qin, Zhiguo Zhao, Yidan Wang, Junbo Wu, Qi Jiang, Jingbi You. Recent progress in stability of perovskite solar cells[J]. Journal of Semiconductors, 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002

      X J Qin, Z G Zhao, Y D Wang, J B Wu, Q Jiang, J B You. Recent progress in stability of perovskite solar cells[J]. J. Semicond., 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002.
      Export: BibTex EndNote

      Recent progress in stability of perovskite solar cells

      doi: 10.1088/1674-4926/38/1/011002
      Funds:

      the National Key Research and Development Program of China 2016YFB0700700

      the National 1000 Young Talent Awards, and the National Natural Science Foundation of China 61574133

      Project supported by China Huaneng Group Project High Performance Perovskite Solar Cells (No. TW-15-HJK01), the National Key Research and Development Program of China (No. 2016YFB0700700), the National 1000 Young Talent Awards, and the National Natural Science Foundation of China (No. 61574133)

      China Huaneng Group Project High Performance Perovskite Solar Cells TW-15-HJK01

      More Information
      • Corresponding author: Jingbi You, Email:jyou@semi.ac.cn
      • Received Date: 2016-11-15
      • Revised Date: 2016-12-03
      • Published Date: 2017-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return