SEMICONDUCTOR DEVICES

Thermal effect analysis of silicon microring optical switch for on-chip interconnect

Xiongfeng Fang1, 2 and Lin Yang1, 2,

+ Author Affiliations

 Corresponding author: Lin Yang, Email: oip@semi.ac.cn

PDF

Abstract: The silicon microring resonator plays an important role in large-scale, high-integrability modern switching matrixes and optical networks, as silicon photonics enables ring resonators of an unprecedented compact size. But as the nature of resonators is their sensitivity to temperature, their performances are vulnerable to being affected by thermal effect. In this paper, we analyze the dominant thermal effects to the application of silicon microring optical switch. On the one hand we theoretically analyze and experimentally measure the thermal crosstalk among adjacent microring optical switches with different distances, and give possible solutions to minimize the affect of thermal crosstalk. On the other hand we analyze and measure the thermooptic dynamic response of microring switch; the experiment shows for the thermal-tuning that the rising edge is around 2μs, and the falling edge is around 35μs. We give the explanation of the asymmetric rise-time and fall-time.

Key words: optical interconnectmicroring optical switchthermo-optic effectthermal crosstalkdynamic response



[1]
Shacham A, Bergman K, Carloni L P. Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans Comput, 2008, 57(9):1246 doi: 10.1109/TC.2008.78
[2]
Kumar S, Jantsch A, Soininen J P, et al. A network on chip architecture and design methodology. Proceedings IEEE Computer Society Annual Symposium on VLSI, 2002:117 http://ieeexplore.ieee.org/document/1016885/
[3]
Poon A W, Luo X, Xu F, et al. Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection. Proc IEEE, 2009, 97(7):1216 doi: 10.1109/JPROC.2009.2014884
[4]
Soref R. The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron, 2006, 12(6):1678 doi: 10.1109/JSTQE.2006.883151
[5]
Pavesi L, Lockwood D J. Silicon photonics. Springer Science & Business Media, 2004
[6]
Carslaw H S, Jaeger J C. Conduction of heat in solids. 2nd ed. New York: Oxford, 1959
[7]
Supa'at A S M. Design and fabrication of a polymer based directional coupler thermooptic switch. PhD Thesis, Universiti Teknologi Malaysia, 2004
[8]
Jaluria Y. Computational heat transfer. CRC Press, 2002
[9]
Wang W, Lee H J, Anthony P J. Planar silica-glass optical waveguides with thermally induced lateral mode confinement. J Lightwave Technol, 1996, 14(3):429 doi: 10.1109/50.485604
[10]
Moller B A, Jensen L, Laurent-Lund C, et al. Silica-waveguide thermooptic phase shifter with low power consumption and low lateral heat diffusion. IEEE Photonics Technol Lett, 1993, 5(12):1415 doi: 10.1109/68.262559
[11]
Nishihara H, Haruna M, Suhara T. Optical integrated circuits. New York:McGraw-Hill Professional, 1989:7 https://core.ac.uk/download/pdf/11783081.pdf
[12]
Ibrahim M H, Kassim N M, Bakar A B U. Thermal analysis in optical waveguides. J Teknologi, 2007, 46:93 https://core.ac.uk/download/pdf/11783081.pdf
[13]
Wang W, Lee H J, Anthony P J. Planar silica-glass optical waveguides with thermally induced lateral mode confinement. J Lightwave Technol, 1996, 14(3):429 doi: 10.1109/50.485604
[14]
Klunder D J W. Thermo optical tuning of Mach-Zehnder inteferometers. Traineeship Report at IBM Zurich Research Laboratory, 1997:20 http://www.en.cnki.com.cn/Article_en/CJFDTotal-CGJM201602003.htm
[15]
Cocorullo G, Della Corte F G, Rendina I. Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm. Appl Phys Lett, 1999, 74(22):3338 doi: 10.1063/1.123337
[16]
Kittel C, Kroemer H. Thermal physics. 2nd ed. Freeman, 1998
[17]
Özışık M N. Heat transfer: a basic approach. McGraw-Hill College, 1985
Fig. 1.  Cross-section of silicon waveguide wrapped with SiO$_{\mathrm{2}}$

Fig. 2.  (a) Temperature distribution in the cross section, (b) variation of temperature distribution with x dimension when y dimension is fixed to silicon core waveguide, and (c) variation of refractive index affected by the temperature variation

Fig. 3.  (a) Schematic of a group, the left one is the heated microring and the right one is the affected microring. (b) Micrograph of ten groups of device

Fig. 4.  The resonance wavelengths of affected microring with different heat powers

Fig. 5.  The experimental and simulation result of the distance-$\Delta n$ relationship

Fig. 6.  Resonance wavelength shift of (a) heating-up and (b) cooling-down process

Fig. 7.  The temperature change of heating-up and cooling-down processes

Fig. 8.  The driving signal and dynamic response of the microring

[1]
Shacham A, Bergman K, Carloni L P. Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans Comput, 2008, 57(9):1246 doi: 10.1109/TC.2008.78
[2]
Kumar S, Jantsch A, Soininen J P, et al. A network on chip architecture and design methodology. Proceedings IEEE Computer Society Annual Symposium on VLSI, 2002:117 http://ieeexplore.ieee.org/document/1016885/
[3]
Poon A W, Luo X, Xu F, et al. Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection. Proc IEEE, 2009, 97(7):1216 doi: 10.1109/JPROC.2009.2014884
[4]
Soref R. The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron, 2006, 12(6):1678 doi: 10.1109/JSTQE.2006.883151
[5]
Pavesi L, Lockwood D J. Silicon photonics. Springer Science & Business Media, 2004
[6]
Carslaw H S, Jaeger J C. Conduction of heat in solids. 2nd ed. New York: Oxford, 1959
[7]
Supa'at A S M. Design and fabrication of a polymer based directional coupler thermooptic switch. PhD Thesis, Universiti Teknologi Malaysia, 2004
[8]
Jaluria Y. Computational heat transfer. CRC Press, 2002
[9]
Wang W, Lee H J, Anthony P J. Planar silica-glass optical waveguides with thermally induced lateral mode confinement. J Lightwave Technol, 1996, 14(3):429 doi: 10.1109/50.485604
[10]
Moller B A, Jensen L, Laurent-Lund C, et al. Silica-waveguide thermooptic phase shifter with low power consumption and low lateral heat diffusion. IEEE Photonics Technol Lett, 1993, 5(12):1415 doi: 10.1109/68.262559
[11]
Nishihara H, Haruna M, Suhara T. Optical integrated circuits. New York:McGraw-Hill Professional, 1989:7 https://core.ac.uk/download/pdf/11783081.pdf
[12]
Ibrahim M H, Kassim N M, Bakar A B U. Thermal analysis in optical waveguides. J Teknologi, 2007, 46:93 https://core.ac.uk/download/pdf/11783081.pdf
[13]
Wang W, Lee H J, Anthony P J. Planar silica-glass optical waveguides with thermally induced lateral mode confinement. J Lightwave Technol, 1996, 14(3):429 doi: 10.1109/50.485604
[14]
Klunder D J W. Thermo optical tuning of Mach-Zehnder inteferometers. Traineeship Report at IBM Zurich Research Laboratory, 1997:20 http://www.en.cnki.com.cn/Article_en/CJFDTotal-CGJM201602003.htm
[15]
Cocorullo G, Della Corte F G, Rendina I. Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm. Appl Phys Lett, 1999, 74(22):3338 doi: 10.1063/1.123337
[16]
Kittel C, Kroemer H. Thermal physics. 2nd ed. Freeman, 1998
[17]
Özışık M N. Heat transfer: a basic approach. McGraw-Hill College, 1985
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3180 Times PDF downloads: 41 Times Cited by: 0 Times

    History

    Received: 09 March 2017 Revised: 06 April 2017 Online: Published: 01 October 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiongfeng Fang, Lin Yang. Thermal effect analysis of silicon microring optical switch for on-chip interconnect[J]. Journal of Semiconductors, 2017, 38(10): 104004. doi: 10.1088/1674-4926/38/10/104004 X F Fang, L Yang. Thermal effect analysis of silicon microring optical switch for on-chip interconnect[J]. J. Semicond., 2017, 38(10): 104004. doi: 10.1088/1674-4926/38/10/104004.Export: BibTex EndNote
      Citation:
      Xiongfeng Fang, Lin Yang. Thermal effect analysis of silicon microring optical switch for on-chip interconnect[J]. Journal of Semiconductors, 2017, 38(10): 104004. doi: 10.1088/1674-4926/38/10/104004

      X F Fang, L Yang. Thermal effect analysis of silicon microring optical switch for on-chip interconnect[J]. J. Semicond., 2017, 38(10): 104004. doi: 10.1088/1674-4926/38/10/104004.
      Export: BibTex EndNote

      Thermal effect analysis of silicon microring optical switch for on-chip interconnect

      doi: 10.1088/1674-4926/38/10/104004
      Funds:

      Project supported by the Natural National Science Foundation of China (Nos. 61235001, 61575187, 61535002)

      Project supported by the Natural National Science Foundation of China Nos. 61235001

      Project supported by the Natural National Science Foundation of China Nos. 61575187

      Project supported by the Natural National Science Foundation of China Nos. 61535002

      More Information
      • Corresponding author: Lin Yang, Email: oip@semi.ac.cn
      • Received Date: 2017-03-09
      • Revised Date: 2017-04-06
      • Published Date: 2017-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return