Special Topic on Devices and Circuits for Wearable and IoT Systems

High power-efficient asynchronous SAR ADC for IoT devices

Beichen Zhang1, 2, Bingbing Yao1, Liyuan Liu1, , Jian Liu1 and Nanjian Wu1

+ Author Affiliations

 Corresponding author: Liyuan Liu, Email: liuly@semi.ac.cn

PDF

Abstract: This paper presents a power-efficient 100-MS/s, 10-bit asynchronous successive approximation register (SAR) ADC. It includes an on-chip reference buffer and the total power dissipation is 6.8 mW. To achieve high performance with high power-efficiency in the proposed ADC, bootstrapped switch, redundancy, set-and-down switching approach, dynamic comparator and dynamic logic techniques are employed. The prototype was fabricated using 65 nm standard CMOS technology. At a 1.2-V supply and 100 MS/s, the ADC achieves an SNDR of 56.2 dB and a SFDR of 65.1 dB. The ADC core consumes only 3.1 mW, resulting in a figure of merit (FOM) of 30.27 fJ/conversionstep and occupies an active area of only 0.009 mm2.

Key words: SAR ADCasynchronousbootstrapped switchdynamic logicpower efficiency



[1]
Tsukamoto Y, Obata K, Matsukawa K, et al. High power efficient and scalable noise-shaping SAR ADC for IoT sensors. 2016 IEEE International Meeting for Future of Electron Devices, 2016: 1
[2]
Lu Y X, Sun L, Li Z, et al. A single-channel 10-bit 160 MS/s SAR ADC in 65 nm CMOS. J Semicond, 2014, 35(4): 045009 doi: 10.1088/1674-4926/35/4/045009
[3]
Guo W J, Sun N. A 9.8 b-ENOB 5.5 fJ/step fully-passive compressive sensing SAR ADC for WSN applications. 42nd European Solid-State Circuits Conference, 2016: 91
[4]
Li D, Meng Q, Li F. A 10 bit 50 MS/s SAR ADC with partial split capacitor switching scheme in 0.18 μm CMOS. J Semicond, 2016, 37(1): 015004 doi: 10.1088/1674-4926/37/1/015004
[5]
Wang J J, Feng Z M, Xu R J, et al. A 100 MS/s 9 bit 0.43 mW SAR ADC with custom capacitor array. J Semicond, 2016, 37(5): 055003 doi: 10.1088/1674-4926/37/5/055003
[6]
Yu M Y, Li T, Yang J Q, et al. A 1 V 186-μW 50-MS/s 10-bit subrange SAR ADC in 130-nm CMOS process. J Semicond, 2016, 37(7): 075005 doi: 10.1088/1674-4926/37/7/075005
[7]
Wulff C, Ytterdal T. A Compiled 9-bit 20-MS/s 3.5-fJ/conv. step SAR ADC in 28-nm FDSOI for bluetooth low energy receivers. IEEE J Solid-State Circuits, 2017, PP(99): 1
[8]
Chen S W M, Brodersen R W. A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-μm CMOS. IEEE J Solid-State Circuits, 2006, 41(12): 2669 doi: 10.1109/JSSC.2006.884231
[9]
Boyacigiller Z, Weir B, Bradshaw P. An error-correcting 14b/20 μs CMOS A/D converter. IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 1981: 62
[10]
Liu W, Chang Y, Hsien S K, et al. A 600 MS/s 30 mW 0.13 μm CMOS ADC array achieving over 60 dB SFDR with adaptive digital equalization. IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 2009: 82
[11]
Lee H S, Hodges D. Self-calibration technique for A/D converters. IEEE Trans Circuits Syst, 1983, 30(3): 188 doi: 10.1109/TCS.1983.1085339
[12]
Kobayashi T, Nogami K, Shirotori T, et al. A current-controlled latch sense amplifier and a static power-saving input buffer for low-power architecture. IEEE J Solid-State Circuits, 1993, 28(4): 523 doi: 10.1109/4.210039
[13]
Abo A M, Gray P R. A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter. IEEE J Solid-State Circuits, 1999, 34(5): 599 doi: 10.1109/4.760369
[14]
Liu C C, Chang S J, Huang G Y, et al. A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure. IEEE J Solid-State Circuits, 2010, 45(5): 731
[15]
Furuta M, Nozawa M, Itakura T. A 10-bit, 40-MS/s, 1.21 mW Pipelined SAR ADC using single-ended 1.5-bit/cycle conversion technique. IEEE J Solid-State Circuits, 2011, 46(6): 1360 doi: 10.1109/JSSC.2011.2126390
[16]
Zhou Y, Xu B W, Chiu Y. A 12 bit 160 MS/s two-step SAR ADC with background bit-weight calibration using a time-domain proximity detector. IEEE J Solid-State Circuits, 2015, 50(4): 920 doi: 10.1109/JSSC.2014.2384025
[17]
Kull L, Toifl T, Schmatz M, et al. A 3.1 mW 8 b 1.2 GS/s single-channel asynchronous SAR ADC with alternate comparators for enhanced speed in 32 nm digital SOI CMOS. IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 2013: 468
[18]
Harpe P, Cantatore E, van Roermund A. An oversampled 12/14 b SAR ADC with noise reduction and linearity enhancements achieving up to 79.1 dB SNDR. IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 2014: 194
[19]
Fredenburg J A, Flynn M P. A 90-MS/s 11-MHz-Bandwidth 62-dB SNDR Noise-Shaping SAR ADC. IEEE J Solid-State Circuits, 2012, 47(12): 2898 doi: 10.1109/JSSC.2012.2217874
[20]
Chen Z J, Miyahara M, Matsuzawa A. A 2nd order fully-passive noise-shaping SAR ADC with embedded passive gain. IEEE Asian Solid-State Circuits Conference, 2016: 309
[21]
Li P W, Chin M J, Gray P R, et al. A ratio-independent algorithmic analog-to-digital conversion technique. IEEE J Solid-State Circuits, 1984, 19(6): 828 doi: 10.1109/JSSC.1984.1052233
[22]
Zhu Y, Chan C H, Sin S W, et al. A 34 fJ 10 b 500 MS/s partial-interleaving pipelined SAR ADC. Symposium on VLSI Circuits, 2012: 90
[23]
Wong S S, Chio U F, Zhu Y, et al. A 2.3 mW 10-bit 170 ms/s two-step binary-search assisted time-interleaved SAR ADC. IEEE J Solid-State Circuits, 2013, 48(8): 1783 doi: 10.1109/JSSC.2013.2258832
[24]
Jeon Y D, Cho Y K, Nam J W, et al. A 9.15 mW 0.22 mm2 10 b 204 MS/s pipelined SAR ADC in 65 nm CMOS. IEEE Custom Integrated Circuits Conference, 2010: 1
Fig. 1.  Synchronous conversion for SAR ADCs.

Fig. 2.  Asynchronous processing for SAR ADCs.

Fig. 3.  ADC arichitecture.

Fig. 4.  Conversion curve for different capacitance ratio.

Fig. 5.  Timing diagram of ADC.

Fig. 6.  Timing diagram of bottom-plate sampling.

Fig. 7.  Structure of bootstrapped switch.

Fig. 8.  (a) Diagram, equivalent circuit when (b) switches on, (c) equivalent circuit when switches off of bootstrapped switch.

Fig. 9.  Two-tail dynamic comparator.

Fig. 10.  Dynamic asynchronous logic circuit.

Fig. 11.  (Color online) Layout of ADC.

Fig. 12.  Measured INL and DNL.

Fig. 13.  (Color online) Spectrum at 5 M input.

Fig. 14.  (Color online) SNDR, SFDR, SNR, THD versus input frequency.

Table 1.   Performance of this work and comparison with other designs.

Parameter 2012’VLSI[22] JSSC’2013[23] CICC’2010[24] This work
Architecture Pipeline-SAR BS-TI SAR Pipeline-SAR SAR
Technology (nm) 65 65 65 65
Resolution (bit) 10 10 10 10
Sampling rate (MS/s) 500 170 204 100
Power (mW) 8.2 2.3 9.15 3.1
SNDR (dB) 55.4 54.6 55.2 56.2
Area (mm3) 0.046 0.104 0.22 0.009
FoM (fJ/conversion-step) 34 30.8 95.4 30.27
DownLoad: CSV
[1]
Tsukamoto Y, Obata K, Matsukawa K, et al. High power efficient and scalable noise-shaping SAR ADC for IoT sensors. 2016 IEEE International Meeting for Future of Electron Devices, 2016: 1
[2]
Lu Y X, Sun L, Li Z, et al. A single-channel 10-bit 160 MS/s SAR ADC in 65 nm CMOS. J Semicond, 2014, 35(4): 045009 doi: 10.1088/1674-4926/35/4/045009
[3]
Guo W J, Sun N. A 9.8 b-ENOB 5.5 fJ/step fully-passive compressive sensing SAR ADC for WSN applications. 42nd European Solid-State Circuits Conference, 2016: 91
[4]
Li D, Meng Q, Li F. A 10 bit 50 MS/s SAR ADC with partial split capacitor switching scheme in 0.18 μm CMOS. J Semicond, 2016, 37(1): 015004 doi: 10.1088/1674-4926/37/1/015004
[5]
Wang J J, Feng Z M, Xu R J, et al. A 100 MS/s 9 bit 0.43 mW SAR ADC with custom capacitor array. J Semicond, 2016, 37(5): 055003 doi: 10.1088/1674-4926/37/5/055003
[6]
Yu M Y, Li T, Yang J Q, et al. A 1 V 186-μW 50-MS/s 10-bit subrange SAR ADC in 130-nm CMOS process. J Semicond, 2016, 37(7): 075005 doi: 10.1088/1674-4926/37/7/075005
[7]
Wulff C, Ytterdal T. A Compiled 9-bit 20-MS/s 3.5-fJ/conv. step SAR ADC in 28-nm FDSOI for bluetooth low energy receivers. IEEE J Solid-State Circuits, 2017, PP(99): 1
[8]
Chen S W M, Brodersen R W. A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-μm CMOS. IEEE J Solid-State Circuits, 2006, 41(12): 2669 doi: 10.1109/JSSC.2006.884231
[9]
Boyacigiller Z, Weir B, Bradshaw P. An error-correcting 14b/20 μs CMOS A/D converter. IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 1981: 62
[10]
Liu W, Chang Y, Hsien S K, et al. A 600 MS/s 30 mW 0.13 μm CMOS ADC array achieving over 60 dB SFDR with adaptive digital equalization. IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 2009: 82
[11]
Lee H S, Hodges D. Self-calibration technique for A/D converters. IEEE Trans Circuits Syst, 1983, 30(3): 188 doi: 10.1109/TCS.1983.1085339
[12]
Kobayashi T, Nogami K, Shirotori T, et al. A current-controlled latch sense amplifier and a static power-saving input buffer for low-power architecture. IEEE J Solid-State Circuits, 1993, 28(4): 523 doi: 10.1109/4.210039
[13]
Abo A M, Gray P R. A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter. IEEE J Solid-State Circuits, 1999, 34(5): 599 doi: 10.1109/4.760369
[14]
Liu C C, Chang S J, Huang G Y, et al. A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure. IEEE J Solid-State Circuits, 2010, 45(5): 731
[15]
Furuta M, Nozawa M, Itakura T. A 10-bit, 40-MS/s, 1.21 mW Pipelined SAR ADC using single-ended 1.5-bit/cycle conversion technique. IEEE J Solid-State Circuits, 2011, 46(6): 1360 doi: 10.1109/JSSC.2011.2126390
[16]
Zhou Y, Xu B W, Chiu Y. A 12 bit 160 MS/s two-step SAR ADC with background bit-weight calibration using a time-domain proximity detector. IEEE J Solid-State Circuits, 2015, 50(4): 920 doi: 10.1109/JSSC.2014.2384025
[17]
Kull L, Toifl T, Schmatz M, et al. A 3.1 mW 8 b 1.2 GS/s single-channel asynchronous SAR ADC with alternate comparators for enhanced speed in 32 nm digital SOI CMOS. IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 2013: 468
[18]
Harpe P, Cantatore E, van Roermund A. An oversampled 12/14 b SAR ADC with noise reduction and linearity enhancements achieving up to 79.1 dB SNDR. IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 2014: 194
[19]
Fredenburg J A, Flynn M P. A 90-MS/s 11-MHz-Bandwidth 62-dB SNDR Noise-Shaping SAR ADC. IEEE J Solid-State Circuits, 2012, 47(12): 2898 doi: 10.1109/JSSC.2012.2217874
[20]
Chen Z J, Miyahara M, Matsuzawa A. A 2nd order fully-passive noise-shaping SAR ADC with embedded passive gain. IEEE Asian Solid-State Circuits Conference, 2016: 309
[21]
Li P W, Chin M J, Gray P R, et al. A ratio-independent algorithmic analog-to-digital conversion technique. IEEE J Solid-State Circuits, 1984, 19(6): 828 doi: 10.1109/JSSC.1984.1052233
[22]
Zhu Y, Chan C H, Sin S W, et al. A 34 fJ 10 b 500 MS/s partial-interleaving pipelined SAR ADC. Symposium on VLSI Circuits, 2012: 90
[23]
Wong S S, Chio U F, Zhu Y, et al. A 2.3 mW 10-bit 170 ms/s two-step binary-search assisted time-interleaved SAR ADC. IEEE J Solid-State Circuits, 2013, 48(8): 1783 doi: 10.1109/JSSC.2013.2258832
[24]
Jeon Y D, Cho Y K, Nam J W, et al. A 9.15 mW 0.22 mm2 10 b 204 MS/s pipelined SAR ADC in 65 nm CMOS. IEEE Custom Integrated Circuits Conference, 2010: 1
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4497 Times PDF downloads: 89 Times Cited by: 0 Times

    History

    Received: 07 March 2017 Revised: 23 May 2017 Online: Accepted Manuscript: 13 November 2017Published: 01 October 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Beichen Zhang, Bingbing Yao, Liyuan Liu, Jian Liu, Nanjian Wu. High power-efficient asynchronous SAR ADC for IoT devices[J]. Journal of Semiconductors, 2017, 38(10): 105001. doi: 10.1088/1674-4926/38/10/105001 B C Zhang, B B Yao, L Y Liu, J Liu, N J Wu. High power-efficient asynchronous SAR ADC for IoT devices[J]. J. Semicond., 2017, 38(10): 105001. doi: 10.1088/1674-4926/38/10/105001.Export: BibTex EndNote
      Citation:
      Beichen Zhang, Bingbing Yao, Liyuan Liu, Jian Liu, Nanjian Wu. High power-efficient asynchronous SAR ADC for IoT devices[J]. Journal of Semiconductors, 2017, 38(10): 105001. doi: 10.1088/1674-4926/38/10/105001

      B C Zhang, B B Yao, L Y Liu, J Liu, N J Wu. High power-efficient asynchronous SAR ADC for IoT devices[J]. J. Semicond., 2017, 38(10): 105001. doi: 10.1088/1674-4926/38/10/105001.
      Export: BibTex EndNote

      High power-efficient asynchronous SAR ADC for IoT devices

      doi: 10.1088/1674-4926/38/10/105001
      More Information
      • Corresponding author: Email: liuly@semi.ac.cn
      • Received Date: 2017-03-07
      • Revised Date: 2017-05-23
      • Published Date: 2017-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return