SEMICONDUCTOR DEVICES

Electrical transport and current properties of rare-earth dysprosium Schottky electrode on p-type GaN at various annealing temperatures

G. Nagaraju1, K. Ravindranatha Reddy2 and V. Rajagopal Reddy1,

+ Author Affiliations

 Corresponding author: V. Rajagopal Reddy, E-mail: reddy_vrg@rediffmail.com (V.Rajagopal Reddy)

PDF

Abstract: The electrical and current transport properties of rapidly annealed Dy/p-GaN SBD are probed by I–V and C–V techniques. The estimated barrier heights (BH) of as-deposited and 200 °C annealed SBDs are 0.80 eV ( I–V)/0.93 eV (C–V) and 0.87 eV (I–V)/1.03 eV (C–V). However, the BH rises to 0.99 eV (I–V)/ 1.18 eV(C–V) and then slightly deceases to 0.92 eV (I–V)/1.03 eV (C–V) after annealing at 300 °C and 400 °C. The utmost BH is attained after annealing at 300 °C and thus the optimum annealing for SBD is 300 °C. By applying Cheung’s functions, the series resistance of the SBD is estimated. The BHs estimated by I–V, Cheung’s and ΨSV plot are closely matched; hence the techniques used here are consistency and validity. The interface state density of the as-deposited and annealed contacts are calculated and we found that the NSS decreases up to 300 °C annealing and then slightly increases after annealing at 400 °C. Analysis indicates that ohmic and space charge limited conduction mechanisms are found at low and higher voltages in forward-bias irrespective of annealing temperatures. Our experimental results demonstrate that the Poole–Frenkel emission is leading under the reverse bias of Dy/p-GaN SBD at all annealing temperatures.

Key words: p-GaNrare-earth Dy Schottky contactsannealing effectselectrical propertiesenergy distribution profilescarrier transport mechanism



[1]
Morkoc H, Strite S, Gao G B, et al. Large-band-gap SiC, III--V nitride, and II--VI ZnSe-based semiconductor device technologies. J Appl Phys, 1994, 76(3): 1363 doi: 10.1063/1.358463
[2]
Jain S C, Willander M, Narayan J, et al. III-nitrides: growth, characterization, and properties. J Appl Phys, 2000, 87(3): 965 doi: 10.1063/1.371971
[3]
Ambacher O. Growth and applications of group III-nitrides. J Phys D, 1998, 31(20): 2653 doi: 10.1088/0022-3727/31/20/001
[4]
Moon J. Micovic M, Kurdoghlian A, et al. Microwave noise performance of AlGaN-GaN HEMTs with small DC power dissipation. IEEE Electron Device Lett, 2002, 23 (11): 637 doi: 10.1109/LED.2002.803766
[5]
Mistele D, Rotter T, Rover K S, et al. First AlGaN/GaN MOSFET with photoanodic gate dielectric. Mater Sci Eng B, 2002, 93(1–3): 107 doi: 10.1016/S0921-5107(02)00052-1
[6]
Brown J, Borges R, Pinner E, et al. AlGaN/GaN HFETs fabricated on 100-mm GaN on silicon (111) substrates. Solid-State Electron, 2002, 46(10): 1535 doi: 10.1016/S0038-1101(02)00101-6
[7]
Matioli E, Brinkley S, Kelchner K M, et al. High-brightness polarized light-emitting diodes. Light Sci Appl, 2012, 1(8): e22 doi: 10.1038/lsa.2012.22
[8]
Wu J. When group-III nitrides go infrared: new properties and perspectives. J Appl Phys, 2009, 106(1): 011101 doi: 10.1063/1.3155798
[9]
Mori T, Kozawa T, Ohwaki T, et al. Schottky barriers and contact resistances on p-type GaN. Appl Phys Lett, 1996, 69(23): 3537 doi: 10.1063/1.117237
[10]
Cao X.A, Pearton S J, Dang G, et al. Effects of interfacial oxides on Schottky barrier contacts to n- and p-type GaN. Appl Phys Lett, 1999, 75(26): 4130 doi: 10.1063/1.125559
[11]
Shiojima K, Sugahara T, Sakai S, et al. Large Schottky barriers for Ni/p-GaN contacts. Appl Phys Lett, 1999, 74(14): 1936 doi: 10.1063/1.123733
[12]
Hibbard D L, Chuang R W, Zhao Y S, et al. Thermally induced variation in barrier height and ideality factor of Ni/Au contacts to p-GaN. J Electron Mater, 2000, 29(3): 291 doi: 10.1007/s11664-000-0065-9
[13]
Yu L S, Qiao D, Jia L, et al. Study of Schottky barrier of Ni on P-GaN. Appl Phys Lett, 2001, 79(27): 4536 doi: 10.1063/1.1428773
[14]
Hartlieb P J, Roskowski A, Davis R F, et al. Pd growth and subsequent Schottky barrier formation on chemical vapor cleaned p-type GaN surfaces. J Appl Phys, 2002, 91(2): 732 doi: 10.1063/1.1424060
[15]
Tan C K, Aziz A A, Yam F K. Schottky barrier properties of various metal (Zr, Ti, Cr, Pt) contact on p-GaN revealed from I–V–T measurement. Appl Surf Sci, 2006, 252(16): 5930 doi: 10.1016/j.apsusc.2005.08.018
[16]
Stafford L, Voss L F, Pearton S J, et al. Schottky barrier height of boride-based rectifying contacts to p-GaN. Appl Phys Lett, 2006, 89(13): 132110 doi: 10.1063/1.2357855
[17]
Fukushima Y, Ogisu K, Kuzuhara M, et al. I–V and C–V characteristics of rare-earth-metal/p-GaN Schottky contacts. Phys Stat Sol C, 2009, 6(S2): S856 doi: 10.1002/pssc.v6.5s2
[18]
Greco G, Prystawko P, Leszczynski M, et al. Electro-structural evolution and Schottky barrier height in annealed Au/Ni contacts onto p-GaN. J Appl Phys, 2011, 110(12): 123703 doi: 10.1063/1.3669407
[19]
Choi Y Y, Kim S, Oh M, et al. Investigation of Fermi level pinning at semipolar (11-22) p-type GaN surfaces. Superlattices Microstruct, 2015, 77: 76 doi: 10.1016/j.spmi.2014.10.031
[20]
Naganawa M, Aoki T, Son J S, et al. Electrical characteristics of a-plane low-Mg-doped p-GaN Schottky contacts. Phys Stat Sol B, 2015, 252(5): 1024 doi: 10.1002/pssb.v252.5
[21]
Jang S H, Jang J S. Electrical characteristics and carrier transport mechanism for Ti/p-GaN Schottky diodes. Electron Mater Lett, 2013, 9(2): 245 doi: 10.1007/s13391-012-2175-y
[22]
Nagaraju G, Dasaradha Rao L, Rajagopal Reddy V. Annealing effects on the electrical, structural and morphological properties of Ti/p-GaN/Ni/Au Schottky diode. Appl Phys A, 2015, 12(1): 131
[23]
Rajagopal Reddy V, Asha B, Choi C J. Effects of annealing on electrical characteristics and current transport mechanisms of the Y/p-GaN Schottky diode. J Electron Mater, 2016, 45(7): 3268 doi: 10.1007/s11664-016-4490-9
[24]
Jyothi I, Janardhanam V, Kim J H, et al. Electrical and structural properties of Au/Yb Schottky contact on p-type GaN as a function of the annealing temperature. J Alloys Compd, 2016, 688: 875 doi: 10.1016/j.jallcom.2016.07.292
[25]
Sze S M. Physics of semiconductor devices. 2nd ed. New York: Wiley, 1981
[26]
Lee K N, Cao X A, Abernathy C R, et al. Effects of thermal stability of GaN epi-layer on the Schottky diodes. Solid-State Electron, 2000, 44(7): 1203 doi: 10.1016/S0038-1101(00)00041-1
[27]
Rhoderick E H, Williams R H. Metal semiconductor contacts. 2nd ed. Oxford: Clarendon Press, 1988
[28]
Tung R T. Electron transport at metal –semiconductor interfaces: general theory. Phys Rev B, 1992, 45(23): 13509 doi: 10.1103/PhysRevB.45.13509
[29]
Crowell C R. The physical significance of the anomalies in Schottky barriers. Solid-State Electron, 1977, 20(3): 171 doi: 10.1016/0038-1101(77)90180-0
[30]
Cheung S K, Cheung N W. Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl Phys Lett, 1986, 49(2): 85 doi: 10.1063/1.97359
[31]
Chattopadhyay S, Bera L K, Ray S K, et al. Extraction of interface state density of Pt/p-strained-Si Schottky diode. Thin Solid Films, 1998, 335(1/2): 142
[32]
Chattopadhyay P. A new technique for the determination of barrier height of Schottky barrier diodes. Solid-State Electron, 1995, 38(3): 739 doi: 10.1016/0038-1101(94)00167-E
[33]
Bouiadjra W B, Kadaoui M A, Saidane A, et al. Influence of annealing temperature on electrical characteristics of Ti/Au/GaAsN Schottky diode with 0.2% nitrogen incorporation. Mater Sci Semicond Process, 2014, 22: 92 doi: 10.1016/j.mssp.2014.01.041
[34]
Lien C D, So F C T, Nicolet M A. An improved forward I–V method for nonideal Schottky diodes with high series resistance. IEEE Trans Electron Dev, 1984, 31(10): 1502 doi: 10.1109/T-ED.1984.21739
[35]
Aubry V, Meyer F. Schottky diodes with high series resistance: limitations of forward I-V methods. J Appl Phys, 1994, 76(12): 7973 doi: 10.1063/1.357909
[36]
Fontaine C, Okumura T, Tu K N. Interfacial reaction and Schottky barrier between Pt and GaAs. J Appl Phys, 1983, 54(3): 1404 doi: 10.1063/1.332165
[37]
Song Y P, Van Meirhaeghe R L, Laflere W H, et al. On the difference in apparent barrier height as obtained from capacitance–voltage and current–voltage–temperature measurements on Al/p-InP Schottky barriers. Solid-State Electron, 1986, 29(6): 633 doi: 10.1016/0038-1101(86)90145-0
[38]
Werner J H, Guttler H. Barrier inhomogeneities at Schottky contacts. J Appl Phys, 1991, 69(3): 1522 doi: 10.1063/1.347243
[39]
Gullu O, Turut A. Electrical analysis of organic interlayer based metal/interlayer/semiconductor diode structures. J Appl Phys, 2009, 106(10): 103717 doi: 10.1063/1.3261835
[40]
Card H C, Rhoderick E H. Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J Phys D, 1971, 4(29): 1589
[41]
Kolnik J, Ozvold M. The influence of inversion surface layers on the evaluation of the interface state energy distribution from Schottky diode I-V characteristics. Phys Stat Sol A, 1990, 122: 583 doi: 10.1002/(ISSN)1521-396X
[42]
Kar S, Dahlke W E. Interface states in MOS structures with 20-40 Å thick SiO2 films on nondegenerate Si. Solid-State Electron, 1972, 15(2): 221 doi: 10.1016/0038-1101(72)90056-1
[43]
Aydogan S, Saglam M, Turut A. The effects of the temperature on the some parameters obtained from current-voltage and capacitance-voltage characteristics of polypyrrole/n-Si structure. Polymer, 2005, 46(2): 563 doi: 10.1016/j.polymer.2004.11.006
[44]
Forrest S R. Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem Rev, 1997, 97(6): 1793 doi: 10.1021/cr941014o
[45]
Yeargan J R, Taylor H L. The Poole-Frenkel effect with compensation present. J Appl Phys, 1968, 39(12): 5600 doi: 10.1063/1.1656022
[46]
Lee H D. Characterization of shallow silicided junctions for sub-quarter micron ULSI technology-extraction of silicidation induced Schottky contact area. IEEE Trans Electron Devices, 2000, 47(4): 762 doi: 10.1109/16.830991
[47]
Janardhanam V, Lee H K, Shim K H, et al. Temperature dependency and carrier transport mechanisms of Ti/p-type InP Schottky rectifiers. J Alloys Compd, 2010, 504 (1): 146 doi: 10.1016/j.jallcom.2010.05.074
[48]
Ashok Kumar A, Rajagopal Reddy V, Janardhanam V, et al. Electrical properties of Pt/n-type Ge Schottky contact with PEDOT: PSS interlayer. J Alloys Compd, 2013, 549: 18 doi: 10.1016/j.jallcom.2012.09.085
[49]
Rajagopal Reddy V, Janardhanam V, Ju J W, et al. Electrical properties of Au/Bi0.5Na0.5TiO3-BaTiO3/n-GaN metal–insulator–semiconductor (MIS) structure. Semicond Sci Technol, 2014, 29(7): 075001 doi: 10.1088/0268-1242/29/7/075001
Fig. 1.  (Color online) The schematic structure of a fabricated Dy/p-GaN Schottky barrier diode (SBD).

Fig. 2.  (Color online) Plane-view SEM images of the Dy Schottky contacts on p-GaN: (a) as-deposited, (b) annealed at 200 °C, (c) annealed at 300 °C, and (d) annealed at 400 °C.

Fig. 3.  (Color online) Typical forward and reverse current–voltage (I–V) characteristics of the Dy/p-GaN SBD at various annealing temperatures.

Fig. 4.  (Color online) Plot of the junction resistance between Dy and p-GaN as a function of annealing temperature.

Fig. 5.  (Color online) (a) Plot of dV/d(ln I) versus I and (b) H(I) versus I of the Dy/p-GaN SBD at different annealing temperatures.

Fig. 6.  (Color online) Surface potential versus forward voltage curves of the Dy/p-GaN SBD at different annealing temperatures.

Fig. 7.  (Color online) Plot of 1/C2V characteristics of Dy/p-GaN SBD at different annealing temperatures.

Fig. 8.  (Color online) The interface state energy distribution curves of the Dy/p-GaN SBD at different annealing temperatures.

Fig. 9.  (Color online) The plot of forward bias log I versus log V curve of the Dy/p-GaN SBD at different annealing temperatures.

Fig. 10.  (Color online) Plot of (a) ln (IR/E) versus E1/2 and (b) ln (IR/T2) versus E1/2 of the Dy/p-GaN SBD at different annealing temperatures.

Table 1.   The estimated barrier height, ideality factor, series resistance and interface state density of the Dy/p-GaN SBD by I–V and C–V methods as a function of annealing.

Parameter As-dep. 200 °C 300 °C 400 °C
I–V characteristics
Barrier height, Φb (eV) 0.8 0.87 0.99 0.92
Ideality factor, n 1.84 1.43 1.31 1.63
Shunt Resistance, RSh (Ω) 4.26 × 10 8 4.33 × 10 9 4.70 × 10 11 4.17 × 10 10
Series resistance, RS (kΩ) 142 150 431 132
Cheung’s functions dV/d(ln I) versus I
Series resistance, RS (kΩ) 169 403 492 427
Ideality factor, n 2.81 2.46 2.32 2.63
H(I) versus I
Series resistance, RS (kΩ) 201 461 613 501
Barrier height, Φb (eV) 0.83 0.93 0.98 0.91
C–V characteristics
Barrier height, Φb (eV) 0.93 1.03 1.18 1.13
Built-in potential (V) 0.83 0.93 1.08 1.03
Interface state density (NSS) 2.8(0.77 eV–Ev) to 2.81(0.82 eV–Ev) to 1.99(0.98 eV–Ev) to 2.02(0.89 eV–Ev) to
ranges (1012 cm–2 eV–1) 4.32(0.54 eV–Ev) 3.51(0.57 eV–Ev) to 2.27(0.58 eV–Ev) 2.75(0.56 eV–Ev)
DownLoad: CSV

Table 2.   The theoretical and experimental slope values of Poole-Frenkel emission and Schottky emission for the Dy/p-type GaN SBD as a function of annealing.

Sample Poole-Frenkel emission Schottky emission
Theoretical Experimental Theoretical Experimental
As-dep 0.0208 0.0234
200 °C 0.00951 0.0282 0.00475 0.0308
300 °C 0.038 0.0408
400 °C 0.0324 0.0352
DownLoad: CSV
[1]
Morkoc H, Strite S, Gao G B, et al. Large-band-gap SiC, III--V nitride, and II--VI ZnSe-based semiconductor device technologies. J Appl Phys, 1994, 76(3): 1363 doi: 10.1063/1.358463
[2]
Jain S C, Willander M, Narayan J, et al. III-nitrides: growth, characterization, and properties. J Appl Phys, 2000, 87(3): 965 doi: 10.1063/1.371971
[3]
Ambacher O. Growth and applications of group III-nitrides. J Phys D, 1998, 31(20): 2653 doi: 10.1088/0022-3727/31/20/001
[4]
Moon J. Micovic M, Kurdoghlian A, et al. Microwave noise performance of AlGaN-GaN HEMTs with small DC power dissipation. IEEE Electron Device Lett, 2002, 23 (11): 637 doi: 10.1109/LED.2002.803766
[5]
Mistele D, Rotter T, Rover K S, et al. First AlGaN/GaN MOSFET with photoanodic gate dielectric. Mater Sci Eng B, 2002, 93(1–3): 107 doi: 10.1016/S0921-5107(02)00052-1
[6]
Brown J, Borges R, Pinner E, et al. AlGaN/GaN HFETs fabricated on 100-mm GaN on silicon (111) substrates. Solid-State Electron, 2002, 46(10): 1535 doi: 10.1016/S0038-1101(02)00101-6
[7]
Matioli E, Brinkley S, Kelchner K M, et al. High-brightness polarized light-emitting diodes. Light Sci Appl, 2012, 1(8): e22 doi: 10.1038/lsa.2012.22
[8]
Wu J. When group-III nitrides go infrared: new properties and perspectives. J Appl Phys, 2009, 106(1): 011101 doi: 10.1063/1.3155798
[9]
Mori T, Kozawa T, Ohwaki T, et al. Schottky barriers and contact resistances on p-type GaN. Appl Phys Lett, 1996, 69(23): 3537 doi: 10.1063/1.117237
[10]
Cao X.A, Pearton S J, Dang G, et al. Effects of interfacial oxides on Schottky barrier contacts to n- and p-type GaN. Appl Phys Lett, 1999, 75(26): 4130 doi: 10.1063/1.125559
[11]
Shiojima K, Sugahara T, Sakai S, et al. Large Schottky barriers for Ni/p-GaN contacts. Appl Phys Lett, 1999, 74(14): 1936 doi: 10.1063/1.123733
[12]
Hibbard D L, Chuang R W, Zhao Y S, et al. Thermally induced variation in barrier height and ideality factor of Ni/Au contacts to p-GaN. J Electron Mater, 2000, 29(3): 291 doi: 10.1007/s11664-000-0065-9
[13]
Yu L S, Qiao D, Jia L, et al. Study of Schottky barrier of Ni on P-GaN. Appl Phys Lett, 2001, 79(27): 4536 doi: 10.1063/1.1428773
[14]
Hartlieb P J, Roskowski A, Davis R F, et al. Pd growth and subsequent Schottky barrier formation on chemical vapor cleaned p-type GaN surfaces. J Appl Phys, 2002, 91(2): 732 doi: 10.1063/1.1424060
[15]
Tan C K, Aziz A A, Yam F K. Schottky barrier properties of various metal (Zr, Ti, Cr, Pt) contact on p-GaN revealed from I–V–T measurement. Appl Surf Sci, 2006, 252(16): 5930 doi: 10.1016/j.apsusc.2005.08.018
[16]
Stafford L, Voss L F, Pearton S J, et al. Schottky barrier height of boride-based rectifying contacts to p-GaN. Appl Phys Lett, 2006, 89(13): 132110 doi: 10.1063/1.2357855
[17]
Fukushima Y, Ogisu K, Kuzuhara M, et al. I–V and C–V characteristics of rare-earth-metal/p-GaN Schottky contacts. Phys Stat Sol C, 2009, 6(S2): S856 doi: 10.1002/pssc.v6.5s2
[18]
Greco G, Prystawko P, Leszczynski M, et al. Electro-structural evolution and Schottky barrier height in annealed Au/Ni contacts onto p-GaN. J Appl Phys, 2011, 110(12): 123703 doi: 10.1063/1.3669407
[19]
Choi Y Y, Kim S, Oh M, et al. Investigation of Fermi level pinning at semipolar (11-22) p-type GaN surfaces. Superlattices Microstruct, 2015, 77: 76 doi: 10.1016/j.spmi.2014.10.031
[20]
Naganawa M, Aoki T, Son J S, et al. Electrical characteristics of a-plane low-Mg-doped p-GaN Schottky contacts. Phys Stat Sol B, 2015, 252(5): 1024 doi: 10.1002/pssb.v252.5
[21]
Jang S H, Jang J S. Electrical characteristics and carrier transport mechanism for Ti/p-GaN Schottky diodes. Electron Mater Lett, 2013, 9(2): 245 doi: 10.1007/s13391-012-2175-y
[22]
Nagaraju G, Dasaradha Rao L, Rajagopal Reddy V. Annealing effects on the electrical, structural and morphological properties of Ti/p-GaN/Ni/Au Schottky diode. Appl Phys A, 2015, 12(1): 131
[23]
Rajagopal Reddy V, Asha B, Choi C J. Effects of annealing on electrical characteristics and current transport mechanisms of the Y/p-GaN Schottky diode. J Electron Mater, 2016, 45(7): 3268 doi: 10.1007/s11664-016-4490-9
[24]
Jyothi I, Janardhanam V, Kim J H, et al. Electrical and structural properties of Au/Yb Schottky contact on p-type GaN as a function of the annealing temperature. J Alloys Compd, 2016, 688: 875 doi: 10.1016/j.jallcom.2016.07.292
[25]
Sze S M. Physics of semiconductor devices. 2nd ed. New York: Wiley, 1981
[26]
Lee K N, Cao X A, Abernathy C R, et al. Effects of thermal stability of GaN epi-layer on the Schottky diodes. Solid-State Electron, 2000, 44(7): 1203 doi: 10.1016/S0038-1101(00)00041-1
[27]
Rhoderick E H, Williams R H. Metal semiconductor contacts. 2nd ed. Oxford: Clarendon Press, 1988
[28]
Tung R T. Electron transport at metal –semiconductor interfaces: general theory. Phys Rev B, 1992, 45(23): 13509 doi: 10.1103/PhysRevB.45.13509
[29]
Crowell C R. The physical significance of the anomalies in Schottky barriers. Solid-State Electron, 1977, 20(3): 171 doi: 10.1016/0038-1101(77)90180-0
[30]
Cheung S K, Cheung N W. Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl Phys Lett, 1986, 49(2): 85 doi: 10.1063/1.97359
[31]
Chattopadhyay S, Bera L K, Ray S K, et al. Extraction of interface state density of Pt/p-strained-Si Schottky diode. Thin Solid Films, 1998, 335(1/2): 142
[32]
Chattopadhyay P. A new technique for the determination of barrier height of Schottky barrier diodes. Solid-State Electron, 1995, 38(3): 739 doi: 10.1016/0038-1101(94)00167-E
[33]
Bouiadjra W B, Kadaoui M A, Saidane A, et al. Influence of annealing temperature on electrical characteristics of Ti/Au/GaAsN Schottky diode with 0.2% nitrogen incorporation. Mater Sci Semicond Process, 2014, 22: 92 doi: 10.1016/j.mssp.2014.01.041
[34]
Lien C D, So F C T, Nicolet M A. An improved forward I–V method for nonideal Schottky diodes with high series resistance. IEEE Trans Electron Dev, 1984, 31(10): 1502 doi: 10.1109/T-ED.1984.21739
[35]
Aubry V, Meyer F. Schottky diodes with high series resistance: limitations of forward I-V methods. J Appl Phys, 1994, 76(12): 7973 doi: 10.1063/1.357909
[36]
Fontaine C, Okumura T, Tu K N. Interfacial reaction and Schottky barrier between Pt and GaAs. J Appl Phys, 1983, 54(3): 1404 doi: 10.1063/1.332165
[37]
Song Y P, Van Meirhaeghe R L, Laflere W H, et al. On the difference in apparent barrier height as obtained from capacitance–voltage and current–voltage–temperature measurements on Al/p-InP Schottky barriers. Solid-State Electron, 1986, 29(6): 633 doi: 10.1016/0038-1101(86)90145-0
[38]
Werner J H, Guttler H. Barrier inhomogeneities at Schottky contacts. J Appl Phys, 1991, 69(3): 1522 doi: 10.1063/1.347243
[39]
Gullu O, Turut A. Electrical analysis of organic interlayer based metal/interlayer/semiconductor diode structures. J Appl Phys, 2009, 106(10): 103717 doi: 10.1063/1.3261835
[40]
Card H C, Rhoderick E H. Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J Phys D, 1971, 4(29): 1589
[41]
Kolnik J, Ozvold M. The influence of inversion surface layers on the evaluation of the interface state energy distribution from Schottky diode I-V characteristics. Phys Stat Sol A, 1990, 122: 583 doi: 10.1002/(ISSN)1521-396X
[42]
Kar S, Dahlke W E. Interface states in MOS structures with 20-40 Å thick SiO2 films on nondegenerate Si. Solid-State Electron, 1972, 15(2): 221 doi: 10.1016/0038-1101(72)90056-1
[43]
Aydogan S, Saglam M, Turut A. The effects of the temperature on the some parameters obtained from current-voltage and capacitance-voltage characteristics of polypyrrole/n-Si structure. Polymer, 2005, 46(2): 563 doi: 10.1016/j.polymer.2004.11.006
[44]
Forrest S R. Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem Rev, 1997, 97(6): 1793 doi: 10.1021/cr941014o
[45]
Yeargan J R, Taylor H L. The Poole-Frenkel effect with compensation present. J Appl Phys, 1968, 39(12): 5600 doi: 10.1063/1.1656022
[46]
Lee H D. Characterization of shallow silicided junctions for sub-quarter micron ULSI technology-extraction of silicidation induced Schottky contact area. IEEE Trans Electron Devices, 2000, 47(4): 762 doi: 10.1109/16.830991
[47]
Janardhanam V, Lee H K, Shim K H, et al. Temperature dependency and carrier transport mechanisms of Ti/p-type InP Schottky rectifiers. J Alloys Compd, 2010, 504 (1): 146 doi: 10.1016/j.jallcom.2010.05.074
[48]
Ashok Kumar A, Rajagopal Reddy V, Janardhanam V, et al. Electrical properties of Pt/n-type Ge Schottky contact with PEDOT: PSS interlayer. J Alloys Compd, 2013, 549: 18 doi: 10.1016/j.jallcom.2012.09.085
[49]
Rajagopal Reddy V, Janardhanam V, Ju J W, et al. Electrical properties of Au/Bi0.5Na0.5TiO3-BaTiO3/n-GaN metal–insulator–semiconductor (MIS) structure. Semicond Sci Technol, 2014, 29(7): 075001 doi: 10.1088/0268-1242/29/7/075001
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3468 Times PDF downloads: 53 Times Cited by: 0 Times

    History

    Received: 27 January 2017 Revised: 04 May 2017 Online: Uncorrected proof: 30 October 2017Accepted Manuscript: 13 November 2017Published: 01 November 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      G. Nagaraju, K. Ravindranatha Reddy, V. Rajagopal Reddy. Electrical transport and current properties of rare-earth dysprosium Schottky electrode on p-type GaN at various annealing temperatures[J]. Journal of Semiconductors, 2017, 38(11): 114001. doi: 10.1088/1674-4926/38/11/114001 G. Nagaraju, K. R. Reddy, V. R. Reddy. Electrical transport and current properties of rare-earth dysprosium Schottky electrode on p-type GaN at various annealing temperatures[J]. J. Semicond., 2017, 38(11): 114001. doi:  10.1088/1674-4926/38/11/114001.Export: BibTex EndNote
      Citation:
      G. Nagaraju, K. Ravindranatha Reddy, V. Rajagopal Reddy. Electrical transport and current properties of rare-earth dysprosium Schottky electrode on p-type GaN at various annealing temperatures[J]. Journal of Semiconductors, 2017, 38(11): 114001. doi: 10.1088/1674-4926/38/11/114001

      G. Nagaraju, K. R. Reddy, V. R. Reddy. Electrical transport and current properties of rare-earth dysprosium Schottky electrode on p-type GaN at various annealing temperatures[J]. J. Semicond., 2017, 38(11): 114001. doi:  10.1088/1674-4926/38/11/114001.
      Export: BibTex EndNote

      Electrical transport and current properties of rare-earth dysprosium Schottky electrode on p-type GaN at various annealing temperatures

      doi: 10.1088/1674-4926/38/11/114001
      More Information
      • Corresponding author: E-mail: reddy_vrg@rediffmail.com (V.Rajagopal Reddy)
      • Received Date: 2017-01-27
      • Revised Date: 2017-05-04
      • Published Date: 2017-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return