SEMICONDUCTOR DEVICES

Electro-magnetic interpretation of four-element torus

Wei Wu and Ning Deng

+ Author Affiliations

 Corresponding author: Ning Deng, Email: ningdeng@tsinghua.edu.cn

PDF

Abstract: The concept of the memristor was proposed by Leon Chua in 1971, along with some electro-magnetic interpretations according to quasi-static expansion of Maxwell’s equations. In 2003, Chua included the memristor into a four-element torus that has infinite circuit elements. This paper uses the quasi-static method to interpret every circuit element in the torus. Two examples are also provided to show how topologic structure of an element affects its electrical properties by affecting the dominant electro-magnetic field components. Additionally, it is proved that the circuit elements in the torus, except the resistive, capacitive and inductive elements, cannot exist independently. Moreover, the incorrectness in Chua’s interpretation of the memristor, that the memristor cannot be interpreted with the transient quasi-static method due to its memory property, is pointed out. Finally, the limitations of the electro-magnetic interpretation method are discussed.

Key words: electro-magnetic interpretationfour-element torusmemristorquasi-static expansion of Maxwell’s equations



[1]
Chua L O. Memristor—the missing circuit element. IEEE Trans Circuit Theory, 1971, 18(5): 507 doi: 10.1109/TCT.1971.1083337
[2]
Ho P W C, Almurib H A F, Kumar T N. Memristive SRAM cell of seven transistors and one memristor. J Semicond, 2016, 37(10): 104002 doi: 10.1088/1674-4926/37/10/104002
[3]
You Z, Hu F, Huang L, et al. A long lifetime, low error rate RRAM design with self-repair module. J Semicond, 2016, 37(11): 115004. doi: 10.1088/1674-4926/37/11/115004
[4]
Kokate P P. Memristor-Based Chaotic Circuits. IETE Techn Rev, 2009, 26(6): 417 doi: 10.4103/0256-4602.57827
[5]
Jo S H, Chang T, Ebong I, et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Lett, 2010, 10(4): 1297 doi: 10.1021/nl904092h
[6]
Kim H, Sah M P, Yang C, et al. Neural synaptic weighting with a pulse-based memristor circuit. IEEE Trans Circuits Syst I, 2012, 59-I(1): 148
[7]
Shinde S S, Dongle T D. Modelling of nanostructured TiO2-based memristors. J Semicond, 2015, 36(3): 52
[8]
Biolek Z, Biolek D, Biolkova V. SPICE Model of Memristor with Nonlinear Dopant Drift. Radioengineering, 2009, 18(2): 210
[9]
Kumar A, Baghini M S. Experimental study for selection of electrode material for ZnO-based memristors. Electron Lett, 2014, 50(21): 1547 doi: 10.1049/el.2014.1491
[10]
Ho P W C, Hatem F O, Almurib H A F, et al. Comparison between Pt/TiO2/Pt and Pt/TaOX/taOY/pt based bipolar resistive switching devices. J Semicond, 2016, 37(6): 064001 doi: 10.1088/1674-4926/37/6/064001
[11]
Ventra M D, Pershin Y V, Chua L O. Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc IEEE, 2009, 97(10): 1717 doi: 10.1109/JPROC.2009.2021077
[12]
Wang F Z. A triangular periodic table of elementary circuit elements. IEEE Trans Circuits Syst I, 2013, 60(3): 616 doi: 10.1109/TCSI.2012.2209734
[13]
Chua L O. Nonlinear circuit foundations for nanodevices I: the four-element torus. Proc IEEE, 2003, 9(11): 1830 doi: 10.1109/JPROC.2003.818319
[14]
Chua L O. Device modeling via nonlinear circuit elements. IEEE Trans Circuits Syst, 1980, 27(11): 1014 doi: 10.1109/TCS.1980.1084742
[15]
Fano R M, Chu L J, Adler R B. Electromagnetic fields, energy, and forces. Wiley, 1960: 122
[16]
Chua L O. Resistance switching memories are memristors. Appl Phys A, 2011, 102(4): 765
Fig. 1.  The four-element torus. (a) Taking ${v^{\left( a \right)}}\!\left( t \right)$ and ${i^{\left( \beta \right)}}\!\left( t \right)$ as coordinate axes to obtain a complete chart. (b) Taking αβ as coordinate axis to distinguish each element series.

Fig. 2.  (a) The structure of cylindrical conductive medium. (b) The structure of two parallel plates.

Fig. 3.  Relationship between electro-magnetic field series. (a) A general relationship in the cylindrical conductive medium. (b) Specific relationship in two parallel plates. (c) Specific relationship to interpret 2nd-order inductor.

Table 1.   Coordinate of some common elementary circuit elements.

Property Common name Definition Coordinate
Resistive elements Differential resistor $ \displaystyle \frac{{{\rm d}v}}{{{\rm d}t}} = R \displaystyle \frac{{{\rm d}i}}{{{\rm d}t}}$ (1, 1)
Resistor v = Ri (0, 0)
Memristor φ = Rq (−1, −1)
Capacitive elements Differential capacitor $ \displaystyle i = C\frac{{{\rm d}v}}{{{\rm d}t}}$ (1, 0)
Capacitor q = Cv (0, −1)
Memcapacitor $ \int {q = C\varphi } $ (−1, −2)
Inductive elements Differential inductor $ \displaystyle v = L\frac{{{\rm d}i}}{{{\rm d}t}}$ (0, 1)
Inductor φ = Li (−1, 0)
Meminductor $\int {\varphi = Lq} $ (−2, −1)
DownLoad: CSV
[1]
Chua L O. Memristor—the missing circuit element. IEEE Trans Circuit Theory, 1971, 18(5): 507 doi: 10.1109/TCT.1971.1083337
[2]
Ho P W C, Almurib H A F, Kumar T N. Memristive SRAM cell of seven transistors and one memristor. J Semicond, 2016, 37(10): 104002 doi: 10.1088/1674-4926/37/10/104002
[3]
You Z, Hu F, Huang L, et al. A long lifetime, low error rate RRAM design with self-repair module. J Semicond, 2016, 37(11): 115004. doi: 10.1088/1674-4926/37/11/115004
[4]
Kokate P P. Memristor-Based Chaotic Circuits. IETE Techn Rev, 2009, 26(6): 417 doi: 10.4103/0256-4602.57827
[5]
Jo S H, Chang T, Ebong I, et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Lett, 2010, 10(4): 1297 doi: 10.1021/nl904092h
[6]
Kim H, Sah M P, Yang C, et al. Neural synaptic weighting with a pulse-based memristor circuit. IEEE Trans Circuits Syst I, 2012, 59-I(1): 148
[7]
Shinde S S, Dongle T D. Modelling of nanostructured TiO2-based memristors. J Semicond, 2015, 36(3): 52
[8]
Biolek Z, Biolek D, Biolkova V. SPICE Model of Memristor with Nonlinear Dopant Drift. Radioengineering, 2009, 18(2): 210
[9]
Kumar A, Baghini M S. Experimental study for selection of electrode material for ZnO-based memristors. Electron Lett, 2014, 50(21): 1547 doi: 10.1049/el.2014.1491
[10]
Ho P W C, Hatem F O, Almurib H A F, et al. Comparison between Pt/TiO2/Pt and Pt/TaOX/taOY/pt based bipolar resistive switching devices. J Semicond, 2016, 37(6): 064001 doi: 10.1088/1674-4926/37/6/064001
[11]
Ventra M D, Pershin Y V, Chua L O. Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc IEEE, 2009, 97(10): 1717 doi: 10.1109/JPROC.2009.2021077
[12]
Wang F Z. A triangular periodic table of elementary circuit elements. IEEE Trans Circuits Syst I, 2013, 60(3): 616 doi: 10.1109/TCSI.2012.2209734
[13]
Chua L O. Nonlinear circuit foundations for nanodevices I: the four-element torus. Proc IEEE, 2003, 9(11): 1830 doi: 10.1109/JPROC.2003.818319
[14]
Chua L O. Device modeling via nonlinear circuit elements. IEEE Trans Circuits Syst, 1980, 27(11): 1014 doi: 10.1109/TCS.1980.1084742
[15]
Fano R M, Chu L J, Adler R B. Electromagnetic fields, energy, and forces. Wiley, 1960: 122
[16]
Chua L O. Resistance switching memories are memristors. Appl Phys A, 2011, 102(4): 765
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2952 Times PDF downloads: 17 Times Cited by: 0 Times

    History

    Received: 24 February 2017 Revised: 08 May 2017 Online: Uncorrected proof: 30 October 2017Accepted Manuscript: 13 November 2017Published: 01 November 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Wei Wu, Ning Deng. Electro-magnetic interpretation of four-element torus[J]. Journal of Semiconductors, 2017, 38(11): 114008. doi: 10.1088/1674-4926/38/11/114008 W Wu, N Deng. Electro-magnetic interpretation of four-element torus[J]. J. Semicond., 2017, 38(11): 114008. doi: 10.1088/1674-4926/38/11/114008.Export: BibTex EndNote
      Citation:
      Wei Wu, Ning Deng. Electro-magnetic interpretation of four-element torus[J]. Journal of Semiconductors, 2017, 38(11): 114008. doi: 10.1088/1674-4926/38/11/114008

      W Wu, N Deng. Electro-magnetic interpretation of four-element torus[J]. J. Semicond., 2017, 38(11): 114008. doi: 10.1088/1674-4926/38/11/114008.
      Export: BibTex EndNote

      Electro-magnetic interpretation of four-element torus

      doi: 10.1088/1674-4926/38/11/114008
      More Information
      • Corresponding author: Email: ningdeng@tsinghua.edu.cn
      • Received Date: 2017-02-24
      • Revised Date: 2017-05-08
      • Published Date: 2017-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return