SEMICONDUCTOR TECHNOLOGY

All-optical temporal fractional order differentiator using an in-fiber ellipsoidal air-microcavity

Lihong Zhang, Shuqian Sun, Ming Li and Ninghua Zhu

+ Author Affiliations

 Corresponding author: Ming Li, Email: ml@semi.ac.cn

PDF

Abstract: An all-optical temporal fractional order differentiator with ultrabroad bandwidth (~1.6 THz) and extremely simple fabrication is proposed and experimentally demonstrated based on an in-fiber ellipsoidal air-microcavity. The ellipsoidal air-microcavity is fabricated by splicing a single mode fiber (SMF) and a photonic crystal fiber (PCF) together using a simple arc-discharging technology. By changing the arc-discharging times, the propagation loss can be adjusted and then the differentiation order is tuned. A nearly Gaussian-like optical pulse with 3 dB bandwidth of 8 nm is launched into the differentiator and a 0.65 order differentiation of the input pulse is achieved with a processing error of 2.55%.

Key words: optical signal processingoptical differentiatorin-fiber ellipsoidal air-microcavity



[1]
Caulfield H J, Dolev S. Why future supercomputing requires optics. Nat Photonics, 2010, 4(5): 261 doi: 10.1038/nphoton.2010.94
[2]
Tucker R S. The role of optics in computing. Nat Photonics, 2010, 4(7): 405 doi: 10.1038/nphoton.2010.162
[3]
Li F, Park Y, Azaña J. Complete temporal pulse characterization based on phase reconstruction using optical ultrafast differentiation. Opt Lett, 2007, 32(22): 3364 doi: 10.1364/OL.32.003364
[4]
Yao J, Zeng F, Wang Q. Photonic generation of ultrawideband signals. J Lightwave Technol, 2007, 25(11): 3219 doi: 10.1109/JLT.2007.906820
[5]
da Silva J A N, de Campos M L R. Spectrally efficient UWB pulse shaping with application in orthogonal PSM. IEEE Trans Commun, 2007, 55(2): 313 doi: 10.1109/TCOMM.2006.887493
[6]
Park Y, Kulishov M, Slavík R, et al. Picosecond and sub-picosecond flat-top pulse generation using uniform long-period fiber gratings. Opt Express, 2006, 14(26): 12670 doi: 10.1364/OE.14.012670
[7]
Park Y, Azaña J, Slavík R. Ultrafast all-optical first- and higher-order differentiators based on interferometers. Opt Lett, 2007, 32(6): 710 doi: 10.1364/OL.32.000710
[8]
Dong J, Zheng A, Gao D, et al. High-order photonic differentiator employing on-chip cascaded microring resonators. Opt Lett, 2013, 38(5): 628 doi: 10.1364/OL.38.000628
[9]
Rutkowska K A, Duchesne D, Strain M J, et al. Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg grating. Opt Express, 2011, 19(20): 19514 doi: 10.1364/OE.19.019514
[10]
Zhang W, Li W, Yao J. Optical differentiator based on an integrated sidewall phase-shifted Bragg grating. IEEE Photonics Technol Lett, 2014, 26(23): 2383 doi: 10.1109/LPT.2014.2357418
[11]
Li M, Jeong H S, Azaña J, et al. 25-terahertz-bandwidth all-optical temporal differentiator. Opt Eexpress, 2012, 20(27): 28273 doi: 10.1364/OE.20.028273
[12]
Cuadrado-Laborde C, Andrés M V. In-fiber all-optical fractional differentiator. Opt Lett, 2009, 34(6): 833 doi: 10.1364/OL.34.000833
[13]
Shahoei H, Xu D X, Schmid J H, et al. Photonic fractional-order differentiator using an SOI microring resonator with an MMI coupler. IEEE Photonics Technol Lett, 2013, 25(15): 1408 doi: 10.1109/LPT.2013.2266252
[14]
Shahoei H, Albert J, Yao J. Tunable fractional order temporal differentiator by optically pumping a tilted fiber Bragg grating. IEEE Photonics Technol Lett, 2012, 24(9): 730 doi: 10.1109/LPT.2012.2187331
[15]
Wang T, Wang M, Ni H. Micro-Fabry-Perot interferometer with high contrast based on an in-fiber ellipsoidal cavity. IEEE Photonics Technol. Lett, 2012, 24(11): 948 doi: 10.1109/LPT.2012.2185841
[16]
Wang T, Wang M. Fabry-Pérot fiber sensor for simultaneous measurement of refractive index and temperature based on an in-fiber ellipsoidal cavity. IEEE Photonics Technol Lett, 2012, 24(19): 1733 doi: 10.1109/LPT.2012.2212184
[17]
Lepetit L, Cheriaux G, Joffre M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. JOSA B, 1995, 12(12): 2467 doi: 10.1364/JOSAB.12.002467
[18]
Dorrer C, Belabas N, Likforman J P, et al. Spectral resolution and sampling issues in Fourier-transform spectral interferometry. JOSA B, 2000, 17(10): 1795 doi: 10.1364/JOSAB.17.001795
Fig. 1.  (a) The schematic diagram and (b) the microscopic image of the in-fiber ellipsoidal air-microcavity.

Fig. 2.  (Color online) (a) The simulated reflection magnitude and (b) the corresponding phase response of the in-fiber ellipsoidal air-microcavity with R = 3% and α = 0.1, 0.05, 0.03, 0.01.

Fig. 3.  (Color online) Simulated differentiated pulses using the air-microcavity with R = 3%, α = 0.05 (a) and α = 0.01 (b) are shown in blue lines. The green lines show the ideal differentiations with the order of 0.4 (a) and 0.65 (b).

Fig. 4.  (Color online) (a) The magnitude and (b) phase response of an 9.4 μm air-microcavity at the central wavelength of 1567.5 nm. The red lines show the measured spectra and the blue lines show the ideal spectra.

Fig. 5.  (Color online) The experimental setup for time-domain characterization of the in-fiber ellipsoidal air-microcavity. OPO: optical parametric oscillator; OSA: optical spectrum analyzer; DSF: dispersion shifted fiber.

Fig. 6.  (Color online) The measured and ideal spectra of the (a) input and (b) output pulses.

Fig. 7.  (Color online) The temporal intensity and phase of the measured and simulated output pulses.

[1]
Caulfield H J, Dolev S. Why future supercomputing requires optics. Nat Photonics, 2010, 4(5): 261 doi: 10.1038/nphoton.2010.94
[2]
Tucker R S. The role of optics in computing. Nat Photonics, 2010, 4(7): 405 doi: 10.1038/nphoton.2010.162
[3]
Li F, Park Y, Azaña J. Complete temporal pulse characterization based on phase reconstruction using optical ultrafast differentiation. Opt Lett, 2007, 32(22): 3364 doi: 10.1364/OL.32.003364
[4]
Yao J, Zeng F, Wang Q. Photonic generation of ultrawideband signals. J Lightwave Technol, 2007, 25(11): 3219 doi: 10.1109/JLT.2007.906820
[5]
da Silva J A N, de Campos M L R. Spectrally efficient UWB pulse shaping with application in orthogonal PSM. IEEE Trans Commun, 2007, 55(2): 313 doi: 10.1109/TCOMM.2006.887493
[6]
Park Y, Kulishov M, Slavík R, et al. Picosecond and sub-picosecond flat-top pulse generation using uniform long-period fiber gratings. Opt Express, 2006, 14(26): 12670 doi: 10.1364/OE.14.012670
[7]
Park Y, Azaña J, Slavík R. Ultrafast all-optical first- and higher-order differentiators based on interferometers. Opt Lett, 2007, 32(6): 710 doi: 10.1364/OL.32.000710
[8]
Dong J, Zheng A, Gao D, et al. High-order photonic differentiator employing on-chip cascaded microring resonators. Opt Lett, 2013, 38(5): 628 doi: 10.1364/OL.38.000628
[9]
Rutkowska K A, Duchesne D, Strain M J, et al. Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg grating. Opt Express, 2011, 19(20): 19514 doi: 10.1364/OE.19.019514
[10]
Zhang W, Li W, Yao J. Optical differentiator based on an integrated sidewall phase-shifted Bragg grating. IEEE Photonics Technol Lett, 2014, 26(23): 2383 doi: 10.1109/LPT.2014.2357418
[11]
Li M, Jeong H S, Azaña J, et al. 25-terahertz-bandwidth all-optical temporal differentiator. Opt Eexpress, 2012, 20(27): 28273 doi: 10.1364/OE.20.028273
[12]
Cuadrado-Laborde C, Andrés M V. In-fiber all-optical fractional differentiator. Opt Lett, 2009, 34(6): 833 doi: 10.1364/OL.34.000833
[13]
Shahoei H, Xu D X, Schmid J H, et al. Photonic fractional-order differentiator using an SOI microring resonator with an MMI coupler. IEEE Photonics Technol Lett, 2013, 25(15): 1408 doi: 10.1109/LPT.2013.2266252
[14]
Shahoei H, Albert J, Yao J. Tunable fractional order temporal differentiator by optically pumping a tilted fiber Bragg grating. IEEE Photonics Technol Lett, 2012, 24(9): 730 doi: 10.1109/LPT.2012.2187331
[15]
Wang T, Wang M, Ni H. Micro-Fabry-Perot interferometer with high contrast based on an in-fiber ellipsoidal cavity. IEEE Photonics Technol. Lett, 2012, 24(11): 948 doi: 10.1109/LPT.2012.2185841
[16]
Wang T, Wang M. Fabry-Pérot fiber sensor for simultaneous measurement of refractive index and temperature based on an in-fiber ellipsoidal cavity. IEEE Photonics Technol Lett, 2012, 24(19): 1733 doi: 10.1109/LPT.2012.2212184
[17]
Lepetit L, Cheriaux G, Joffre M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. JOSA B, 1995, 12(12): 2467 doi: 10.1364/JOSAB.12.002467
[18]
Dorrer C, Belabas N, Likforman J P, et al. Spectral resolution and sampling issues in Fourier-transform spectral interferometry. JOSA B, 2000, 17(10): 1795 doi: 10.1364/JOSAB.17.001795
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3351 Times PDF downloads: 20 Times Cited by: 0 Times

    History

    Received: 03 May 2017 Revised: 24 May 2017 Online: Uncorrected proof: 11 November 2017Corrected proof: 15 November 2017Published: 01 December 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Lihong Zhang, Shuqian Sun, Ming Li, Ninghua Zhu. All-optical temporal fractional order differentiator using an in-fiber ellipsoidal air-microcavity[J]. Journal of Semiconductors, 2017, 38(12): 126001. doi: 10.1088/1674-4926/38/12/126001 L H Zhang, S Q Sun, M Li, N H Zhu. All-optical temporal fractional order differentiator using an in-fiber ellipsoidal air-microcavity[J]. J. Semicond., 2017, 38(12): 126001. doi: 10.1088/1674-4926/38/12/126001.Export: BibTex EndNote
      Citation:
      Lihong Zhang, Shuqian Sun, Ming Li, Ninghua Zhu. All-optical temporal fractional order differentiator using an in-fiber ellipsoidal air-microcavity[J]. Journal of Semiconductors, 2017, 38(12): 126001. doi: 10.1088/1674-4926/38/12/126001

      L H Zhang, S Q Sun, M Li, N H Zhu. All-optical temporal fractional order differentiator using an in-fiber ellipsoidal air-microcavity[J]. J. Semicond., 2017, 38(12): 126001. doi: 10.1088/1674-4926/38/12/126001.
      Export: BibTex EndNote

      All-optical temporal fractional order differentiator using an in-fiber ellipsoidal air-microcavity

      doi: 10.1088/1674-4926/38/12/126001
      Funds:

      Project supported by the the National Natural Science Foundation of China (Nos. 61522509, 61377002, 61535012), the National High-Tech Research & Development Program of China (No. SS2015AA011002), and the Beijing Natural Science Foundation (No. 4152052). Ming Li was supported in part by the Thousand Young Talent Program.

      More Information
      • Corresponding author: Email: ml@semi.ac.cn
      • Received Date: 2017-05-03
      • Revised Date: 2017-05-24
      • Published Date: 2017-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return