SEMICONDUCTOR MATERIALS

Substrate temperature dependent studies on properties of chemical spray pyrolysis deposited CdS thin films for solar cell applications

Kiran Diwate1, Amit Pawbake1, Sachin Rondiya1, Rupali Kulkarni1, Ravi Waykar1, Ashok Jadhavar1, Avinash Rokade1, Adinath Funde1, Kakasaheb Mohite2, Manish Shinde3, Habib Pathan4, Rupesh Devan4 and Sandesh Jadkar4,

+ Author Affiliations

 Corresponding author: Sandesh Jadkar,Email:sandesh@physics.unipune.ac.in

PDF

Abstract: Thin films of CdS have been prepared by chemical spray pyrolysis by spraying precursor solution directly onto soda lime glass(SLG) substrates. Influence of substrate temperature on structural, optical, morphological and electrical properties have been investigated by using various techniques such as low angle X-ray diffraction(XRD), Raman spectroscopy, X-ray photoelectron spectroscopy(XPS), field emission scanning electron microscopy(FESEM), atomic force microscopy(AFM), transmission electron microscopy(TEM), UV-visible spectroscopy photoluminescence(PL) spectroscopy etc. Formation of CdS has been confirmed by low angle XRD, Raman spectroscopy and XPS analysis. XRD pattern showed that CdS films are polycrystalline, have hexagonal structure and prefer orientation of crystallites shifts from(101) to(002) with increase in substrate temperature. Raman spectroscopy revealed that exciton-phonon coupling depends on substrate temperature and hence on crystallite size. Optical band gap increased from 2.43 to 2.99 eV when substrate temperature increased from 325 to 475℃. Transmittance of the film also showed an increasing trend from ~52% to ~80% with increase in substrate temperature. Such high band gap and transmittance values of CdS films prepared at 475℃ make it a useful window material in CdS/CdTe and CdS/Cu2S heterojunction solar cells.

Key words: thin filmsCdSchemical spray pyrolysisFESEMRaman spectroscopyphotoluminescence



[1]
Baykul M C, Orhan N. Band alignment of Cd1-xZnxS produced by spray pyrolysis method. Thin Solid Films, 2010, 518(8):192
[2]
Errai M, Kaaouachi A E, Idrissi H El. Variable range hopping conduction in n-CdSe samples at very low temperature. J Semicond, 2015, 36(12):054001 http://cn.bing.com/academic/profile?id=ec7ed4242e2f6743570e5cc04b2680be&encoded=0&v=paper_preview&mkt=zh-cn
[3]
Lee Y H, Im S H, Rhee J H, et al. Performance enhancement through post-treatments of CdS-sensitized solar cells fabricated by spray pyrolysis deposition. Appl Mater Interfaces, 2010, 2(6):1648 doi: 10.1021/am100169t
[4]
Gorji N E. Deposition and doping of CdS/CdTe thin film solar cells. J Semicond 2015, 36(5):122001 http://cn.bing.com/academic/profile?id=39533d86190da09bdafe3b0b5f8f0a93&encoded=0&v=paper_preview&mkt=zh-cn
[5]
Husham M, Hassan Z, Mahdi M A, et al. Fabrication and characterization of nanocrystalline CdS thin film-based optical sensor grown via microwave-assisted chemical bath deposition. Superlattices Microstruct, 2014, 67:8 doi: 10.1016/j.spmi.2013.12.010
[6]
Zhu Y Q, Shan Y Y, Qin M. Design and implementation of novel thin film position-sensitive detectors (TFPSDs) based on photoconductive effect. Microsystem Technol, 1975, 21(9):1975 http://cn.bing.com/academic/profile?id=651608c60315f364b15c2dbd024869dd&encoded=0&v=paper_preview&mkt=zh-cn
[7]
Schlamp M C, Peng X, Alivisatos A P. Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer. J Appl Phys, 1997, 82(11):5837 doi: 10.1063/1.366452
[8]
Bruchez M, Morrone M, Gin P, et al. Handbook of self assembled semiconductor nanostructures for novel. Science, 1998, 281:2013 doi: 10.1126/science.281.5385.2013
[9]
Williams B L, Major J D, Bowen L, et al. Challenges and prospects for developing CdS/CdTe substrate solar cells on Mo foils. Sol Energy Mater Sol Cells, 2014, 124:31 doi: 10.1016/j.solmat.2014.01.017
[10]
Paudel N R, Grice C R, Xiao C X, et al. The effects of high temperature processing on the structural and optical properties of oxygenated CdS window layers in CdTe solar cells. J Appl Phys, 2014, 116(4):044506 doi: 10.1063/1.4891235
[11]
Leng M Y, Luo M, Chen C, et al. Selenization of Sb2Se3 absorber layer:an efficient step to improve device performance of CdS/Sb2Se3 solar cells. Appl Phys Lett, 2014, 105(8):083905 doi: 10.1063/1.4894170
[12]
Kim N H, Ryu S H, Noh H S, et al. Electrical and optical properties of sputter-deposited cadmium sulfide thin films optimized by annealing temperature. Mater Sci Semicond Process, 2012, 15(2):125 doi: 10.1016/j.mssp.2011.09.001
[13]
Izgorodin A, Winther-Jensen O, Winther-Jensen B, et al. CdS thin-film electrodeposition from a phosphonium ionic liquid. Phys Chem Chem Phys, 2009, 11(38):8532 doi: 10.1039/b906995j
[14]
Jassim S, Zumaila A, Waly G. Influence of substrate temperature on the structural, optical and electrical properties of CdS thin films deposited by thermal evaporation. Results Phys, 2013, 3:173 doi: 10.1016/j.rinp.2013.08.003
[15]
Kumar P, Saxena N, Chandra R, et al. SHI induced enhancement in green emission from nanocrystalline CdS thin films for photonic applications. J Lumin, 2014, 147:184 doi: 10.1016/j.jlumin.2013.11.026
[16]
Mahdi M A, Hassan Z, Ng S S, et al. Structural and optical properties of nanocrystalline CdS thin films prepared using microwave-assisted chemical bath deposition. Thin Solid Films, 2012, 520:3477 doi: 10.1016/j.tsf.2011.12.059
[17]
Sartale S D, Lokhande C D. Growth of copper sulphide thin films by successive ionic layer adsorption and reaction (SILAR) method. Mater Chem Phys, 2000, 65:63 doi: 10.1016/S0254-0584(00)00207-8
[18]
Ziabari A A, Ghodsi F E. Growth, characterization and studying of sol-gel derived CdS nanoscrystalline thin films in corporate in polyethylene glycol:effects of post-heat treatment. Sol Energy Mater Sol Cells, 2012,105:249 doi: 10.1016/j.solmat.2012.05.014
[19]
Khot K Mali S, Kharade R, et al. Novel-approach for fabrication of CdS thin films for photoelectrochemical solar cell application. J Mater Sci Mater Electron, 2014, 25:5606 doi: 10.1007/s10854-014-2350-z
[20]
Zhang F Z, Li X Q, Wu X F, et al. Influence of deposition temperature on CdS thin films by polyol method. J Semicond, 2014, 35(8):083003 doi: 10.1088/1674-4926/35/8/083003
[21]
Kumar S, Chandra R. Structure and optical characterization of nickel-doped nano CdS powder. J Optoelectron Adv Mater, 2011, 13(8):952
[22]
Shono Y, Oka T. Optimum growth conditions of CdS thin films grown on GaAs (111) B by MBE. J Vac Soc Jpn, 2000, 43(3):284 doi: 10.3131/jvsj.43.284
[23]
Padmavathy R, Rajesh N P, Gopalakrishnan R, et al. Enhancement of photochemical deposition (PCD) and analysis of surface spread of CdS crystalline thin films. Mater Lett, 2002, 53:321 doi: 10.1016/S0167-577X(01)00500-6
[24]
Tsuji M, Aramoto T, Ohyama H, et al. Characterization of CdS thin film in high efficient CdS/CdTe solar cells. J Cryst Growth, 2000, 214(215):1142 http://cn.bing.com/academic/profile?id=e975aab8bff7de85ccadd0921df6a263&encoded=0&v=paper_preview&mkt=zh-cn
[25]
Yadav A A, Masumdar E U. Photoelectrochemical investigations of cadmium sulphide (CdS) thin film electrodes prepared by spray pyrolysis. J Alloys Compd, 2011, 509(17):5394 doi: 10.1016/j.jallcom.2011.02.061
[26]
Al Kuhaimi S A. Influence of preparation technique on the structural, optical and electrical properties of polycrystalline CdS films. Vacuum, 1998, 51(3):349 doi: 10.1016/S0042-207X(98)00112-2
[27]
Cullity B D, Stock S R. Elements of X-ray diffraction. 3rd ed. New York:Prentice-Hall, 2001
[28]
van der Pauw L J. A method of measuring specific resistivity and hall effect of discs of arbitrary shape. Philips Res Reports, 1958
[29]
Ramadan A A, Gould R D, Ashour A. On the Van der Pauw method of resistivity measurements. Thin Solid Films, 1994, 239:272 doi: 10.1016/0040-6090(94)90863-X
[30]
Tepantlan C S, Perez Gonzalez A M, Arreola I V. Structural, optical and electrical properties of CdS thin films obtained by spray pyrolysis. Revista Mexicana de Fisica, 2008, 54(2):112 http://cn.bing.com/academic/profile?id=f522199bc20c232d93a5e3882600e306&encoded=0&v=paper_preview&mkt=zh-cn
[31]
Ashour A. Physical properties of spray pyrolysed CdS thin films. Turk J Phys, 2003, 27:551 http://cn.bing.com/academic/profile?id=174816ac83664567d7cd9f92644c0a40&encoded=0&v=paper_preview&mkt=zh-cn
[32]
Khan T, Bibi T. Application of NS pulsed laser ablation for dense CdS nanoparticles deposition in argon atmosphere. Sop Trans Appl Phys, 2014, 1(2):48 http://cn.bing.com/academic/profile?id=f813739bffb02d2148191e7366a03d08&encoded=0&v=paper_preview&mkt=zh-cn
[33]
Kumar P, Saxena N, Chandra R, et al. Nanotwinning and structural phase transition in CdS quantum dots. Nanoscale Res Lett, 2012, 7:584 doi: 10.1186/1556-276X-7-584
[34]
Schreder B, Dem C, Schmitt M, et al. Raman spectroscopy of Ⅱ-VI semiconductor nanostructures:CdS quantum dots. J Raman Spectrosc, 2003, 34:100 doi: 10.1002/(ISSN)1097-4555
[35]
Zeiri L, Patla I, Acharya S, et al. Raman spectroscopy of ultranarrow CdS nanostructures. J Phys Chem C, 2007, 111:11843 http://cn.bing.com/academic/profile?id=6f5d853fbefe9efdd456e170e2261e3e&encoded=0&v=paper_preview&mkt=zh-cn
[36]
Shiang J, Risbud S H, Alivisatos A P. Resonance Raman studies of the ground and lowest electronic excited state in CdS nanocrystals. J Chem Phys, 1993, 98:8432 doi: 10.1063/1.464501
[37]
Efros A L, Ekimov A I, Kozlowski F, et al. Resonance Raman spectroscopy of electron-hole pairs-polar phonon coupling in semiconductor quantum microcrystals. Solid State Commun, 1991, 78(10):853 doi: 10.1016/0038-1098(91)90242-N
[38]
Nomura S, Kobayashi T. Exciton-LO-phonon couplings in spherical semiconductor microcrystallites. Phys Rev B, 1992, 45:1305 doi: 10.1103/PhysRevB.45.1305
[39]
Pan A L, Liu R B, Yang Q, et al. Stimulated emissions in aligned CdS nanowires at room temperature. J Phys Chem B, 2005, 109:24268 doi: 10.1021/jp055164m
[40]
Maliki H E, Berne'de J C, Marsillac S, et al. Study of the influence of annealing on the properties of CBD-CdS thin films. Appl Surf Sci, 2003, 205:65 doi: 10.1016/S0169-4332(02)01082-6
[41]
Roy P, Srivastava S. A new approach towards the growth of cadmium sulphide thin film by CBD method and its characterization. Mater Chem Phys, 2006, 95:235 doi: 10.1016/j.matchemphys.2005.06.010
[42]
Hota G, Idage S B, Khilar K C. Characterization of nano-sized CdS-Ag2S core-shell nanoparticles using XPS technique. Colloids Surf A, 2007, 293:5 doi: 10.1016/j.colsurfa.2006.06.036
[43]
Zhao F H, Su Q, Xu N S, et al. Selectively hydrothermal and solvothermal growth of CdS nanospheres and nanorods:a facile way to tune finely optical properties. J Mater Sci, 2006, 41:1449 doi: 10.1007/s10853-006-7459-x
[44]
Zhou S M, Feng Y S, Zhang L D. Sonochemical synthesis of large-scale single crystal CdS nanorods. Mater Lett, 2003, 57(19):2936 doi: 10.1016/S0167-577X(02)01400-3
[45]
Acosta D, Magana C, Martinez A, et al. Structural evolution and optical characterization of indium doped cadmium sulfide thin films obtained by spray pyrolysis for different substrate temperatures. Sol Energy Mater Sol Cells, 2004, 82:11 doi: 10.1016/j.solmat.2004.01.001
[46]
Tauc J. Absorption edge and internal electric fields in amorphous semiconductors. Mater Res Bulle, 1970, 5(8):721 doi: 10.1016/0025-5408(70)90112-1
[47]
Enriquez J, Mathew X. Influence of the thickness on structural, optical and electrical properties of chemical bath deposited CdS thin films. Sol Energy Mater Sol Cells, 2003, 76:313 doi: 10.1016/S0927-0248(02)00283-0
[48]
Yadav R, Mishra P, Mishra R, et al. Growth mechanism and optical property of CdS nanoparticles synthesized using amino-acid histidine as chelating agent under sonochemical process. Ultrasonics Sonochemistry, 2010, 17:116 doi: 10.1016/j.ultsonch.2009.04.011
[49]
Dongre J K, Nogriya V, Ramrakhiani M. Structural, optical and photoelectrochemical characterization of CdS nanowire synthesized by chemical bath deposition and wet chemical etching. Appl Surf Sci, 2009, 255:6115 doi: 10.1016/j.apsusc.2009.01.064
[50]
Pedrotti L S, Reynolds D C. Change in structure of blue and green fluorescence in cadmium sulfide at low temperatures. Phys Rev, 1960, 119:1897 doi: 10.1103/PhysRev.119.1897
[51]
Kulp B A, Kelley R H. Displacement of the sulfur atom in CdS by electron bombardment. J Appl Phys, 1960, 31(6):945 doi: 10.1063/1.1735780
[52]
Panda S K, Chakrabarti S, Satpati B, et al. Optical and microstructural characterization of CdS-ZnO nanocomposite thin films prepared by sol-gel technique. J Phys D, 2004, 37:628 doi: 10.1088/0022-3727/37/4/014
[53]
Saunders A, Popov I, Banin U. Synthesis of hybrid CdS-Au colloidal nanostructures. J Phys Chem B, 2006, 110:25421 doi: 10.1021/jp065594s
[54]
Zhao X S, Schroeder J, Persans P D, et al. Resonant-Ramanscattering and photoluminescence studies in glass-composite and colloidal CdS. Phys Rev B, 1991, 43:12580 doi: 10.1103/PhysRevB.43.12580
[55]
Wang Y W, Meng G W, Zhang L D, et al. Catalytic growth of large-scale single-crystal CdS nanowires by physical evaporation and their photoluminescence. Chem Mater, 2002, 14:1773 doi: 10.1021/cm0115564
Fig. 1.  Relationship between film thickness and substrate temperature for CdS films deposited by chemical spray pyrolysis.

Fig. 2.  (Color online) Low angle XRD pattern of CdS films prepared at different substrate temperatures.

Fig. 3.  Average crystallite size as a function of substrate temperature for CdS films deposited by chemical spray pyrolysis.

Fig. 4.  Raman spectra of CdS films deposited at different substrate temperature by chemical spray pyrolysis.

Fig. 5.  Typical XPS spectra for CdS film deposited at substrate temperature 425 ℃ by CSP method. (a) Wide scan in the range 0-800 eV. (b) Cd 3d spectra in the range 400-416 eV. (c) S 2p spectra in the range 158-166 eV.

Fig. 6.  FESEM images of CdS films prepared at substrate temperatures (a) 325 ℃, (b) 375 ℃, (c) 425 ℃ and (d) 475 ℃.

Fig. 7.  AFM images of CdS films prepared at (a) 325 ℃, (b) 375 ℃, (c) 425 ℃ and (d) 475 ℃ by CSP method.

Fig. 8.  TEM images of CdS films deposited at substrate temperature of (a) 325 ℃, (b) 475 ℃ and (c) SAED pattern of CdS film deposited at substrate temperature of 475 ℃.

Fig. 9.  (Color online) Transmittance spectra of CdS films deposited at various substrate temperatures using CSP method.

Fig. 10.  (Color online) Tauc plots for CdS films deposited at different substrate temperatures. The inset shows variation of optical gap as a function of substrate temperature for CdS thin films deposited using CSP method.

Fig. 11.  (Color online) Photoluminescence spectra of CdS films deposited at different substrate temperatures using CSP method.

Table 1.   Deposition parameters used for the synthesis of CdS thin films deposited by CSP method.

Table 2.   Variation in sheet resistance as a function of substrate temperature of CdS thin films.

[1]
Baykul M C, Orhan N. Band alignment of Cd1-xZnxS produced by spray pyrolysis method. Thin Solid Films, 2010, 518(8):192
[2]
Errai M, Kaaouachi A E, Idrissi H El. Variable range hopping conduction in n-CdSe samples at very low temperature. J Semicond, 2015, 36(12):054001 http://cn.bing.com/academic/profile?id=ec7ed4242e2f6743570e5cc04b2680be&encoded=0&v=paper_preview&mkt=zh-cn
[3]
Lee Y H, Im S H, Rhee J H, et al. Performance enhancement through post-treatments of CdS-sensitized solar cells fabricated by spray pyrolysis deposition. Appl Mater Interfaces, 2010, 2(6):1648 doi: 10.1021/am100169t
[4]
Gorji N E. Deposition and doping of CdS/CdTe thin film solar cells. J Semicond 2015, 36(5):122001 http://cn.bing.com/academic/profile?id=39533d86190da09bdafe3b0b5f8f0a93&encoded=0&v=paper_preview&mkt=zh-cn
[5]
Husham M, Hassan Z, Mahdi M A, et al. Fabrication and characterization of nanocrystalline CdS thin film-based optical sensor grown via microwave-assisted chemical bath deposition. Superlattices Microstruct, 2014, 67:8 doi: 10.1016/j.spmi.2013.12.010
[6]
Zhu Y Q, Shan Y Y, Qin M. Design and implementation of novel thin film position-sensitive detectors (TFPSDs) based on photoconductive effect. Microsystem Technol, 1975, 21(9):1975 http://cn.bing.com/academic/profile?id=651608c60315f364b15c2dbd024869dd&encoded=0&v=paper_preview&mkt=zh-cn
[7]
Schlamp M C, Peng X, Alivisatos A P. Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer. J Appl Phys, 1997, 82(11):5837 doi: 10.1063/1.366452
[8]
Bruchez M, Morrone M, Gin P, et al. Handbook of self assembled semiconductor nanostructures for novel. Science, 1998, 281:2013 doi: 10.1126/science.281.5385.2013
[9]
Williams B L, Major J D, Bowen L, et al. Challenges and prospects for developing CdS/CdTe substrate solar cells on Mo foils. Sol Energy Mater Sol Cells, 2014, 124:31 doi: 10.1016/j.solmat.2014.01.017
[10]
Paudel N R, Grice C R, Xiao C X, et al. The effects of high temperature processing on the structural and optical properties of oxygenated CdS window layers in CdTe solar cells. J Appl Phys, 2014, 116(4):044506 doi: 10.1063/1.4891235
[11]
Leng M Y, Luo M, Chen C, et al. Selenization of Sb2Se3 absorber layer:an efficient step to improve device performance of CdS/Sb2Se3 solar cells. Appl Phys Lett, 2014, 105(8):083905 doi: 10.1063/1.4894170
[12]
Kim N H, Ryu S H, Noh H S, et al. Electrical and optical properties of sputter-deposited cadmium sulfide thin films optimized by annealing temperature. Mater Sci Semicond Process, 2012, 15(2):125 doi: 10.1016/j.mssp.2011.09.001
[13]
Izgorodin A, Winther-Jensen O, Winther-Jensen B, et al. CdS thin-film electrodeposition from a phosphonium ionic liquid. Phys Chem Chem Phys, 2009, 11(38):8532 doi: 10.1039/b906995j
[14]
Jassim S, Zumaila A, Waly G. Influence of substrate temperature on the structural, optical and electrical properties of CdS thin films deposited by thermal evaporation. Results Phys, 2013, 3:173 doi: 10.1016/j.rinp.2013.08.003
[15]
Kumar P, Saxena N, Chandra R, et al. SHI induced enhancement in green emission from nanocrystalline CdS thin films for photonic applications. J Lumin, 2014, 147:184 doi: 10.1016/j.jlumin.2013.11.026
[16]
Mahdi M A, Hassan Z, Ng S S, et al. Structural and optical properties of nanocrystalline CdS thin films prepared using microwave-assisted chemical bath deposition. Thin Solid Films, 2012, 520:3477 doi: 10.1016/j.tsf.2011.12.059
[17]
Sartale S D, Lokhande C D. Growth of copper sulphide thin films by successive ionic layer adsorption and reaction (SILAR) method. Mater Chem Phys, 2000, 65:63 doi: 10.1016/S0254-0584(00)00207-8
[18]
Ziabari A A, Ghodsi F E. Growth, characterization and studying of sol-gel derived CdS nanoscrystalline thin films in corporate in polyethylene glycol:effects of post-heat treatment. Sol Energy Mater Sol Cells, 2012,105:249 doi: 10.1016/j.solmat.2012.05.014
[19]
Khot K Mali S, Kharade R, et al. Novel-approach for fabrication of CdS thin films for photoelectrochemical solar cell application. J Mater Sci Mater Electron, 2014, 25:5606 doi: 10.1007/s10854-014-2350-z
[20]
Zhang F Z, Li X Q, Wu X F, et al. Influence of deposition temperature on CdS thin films by polyol method. J Semicond, 2014, 35(8):083003 doi: 10.1088/1674-4926/35/8/083003
[21]
Kumar S, Chandra R. Structure and optical characterization of nickel-doped nano CdS powder. J Optoelectron Adv Mater, 2011, 13(8):952
[22]
Shono Y, Oka T. Optimum growth conditions of CdS thin films grown on GaAs (111) B by MBE. J Vac Soc Jpn, 2000, 43(3):284 doi: 10.3131/jvsj.43.284
[23]
Padmavathy R, Rajesh N P, Gopalakrishnan R, et al. Enhancement of photochemical deposition (PCD) and analysis of surface spread of CdS crystalline thin films. Mater Lett, 2002, 53:321 doi: 10.1016/S0167-577X(01)00500-6
[24]
Tsuji M, Aramoto T, Ohyama H, et al. Characterization of CdS thin film in high efficient CdS/CdTe solar cells. J Cryst Growth, 2000, 214(215):1142 http://cn.bing.com/academic/profile?id=e975aab8bff7de85ccadd0921df6a263&encoded=0&v=paper_preview&mkt=zh-cn
[25]
Yadav A A, Masumdar E U. Photoelectrochemical investigations of cadmium sulphide (CdS) thin film electrodes prepared by spray pyrolysis. J Alloys Compd, 2011, 509(17):5394 doi: 10.1016/j.jallcom.2011.02.061
[26]
Al Kuhaimi S A. Influence of preparation technique on the structural, optical and electrical properties of polycrystalline CdS films. Vacuum, 1998, 51(3):349 doi: 10.1016/S0042-207X(98)00112-2
[27]
Cullity B D, Stock S R. Elements of X-ray diffraction. 3rd ed. New York:Prentice-Hall, 2001
[28]
van der Pauw L J. A method of measuring specific resistivity and hall effect of discs of arbitrary shape. Philips Res Reports, 1958
[29]
Ramadan A A, Gould R D, Ashour A. On the Van der Pauw method of resistivity measurements. Thin Solid Films, 1994, 239:272 doi: 10.1016/0040-6090(94)90863-X
[30]
Tepantlan C S, Perez Gonzalez A M, Arreola I V. Structural, optical and electrical properties of CdS thin films obtained by spray pyrolysis. Revista Mexicana de Fisica, 2008, 54(2):112 http://cn.bing.com/academic/profile?id=f522199bc20c232d93a5e3882600e306&encoded=0&v=paper_preview&mkt=zh-cn
[31]
Ashour A. Physical properties of spray pyrolysed CdS thin films. Turk J Phys, 2003, 27:551 http://cn.bing.com/academic/profile?id=174816ac83664567d7cd9f92644c0a40&encoded=0&v=paper_preview&mkt=zh-cn
[32]
Khan T, Bibi T. Application of NS pulsed laser ablation for dense CdS nanoparticles deposition in argon atmosphere. Sop Trans Appl Phys, 2014, 1(2):48 http://cn.bing.com/academic/profile?id=f813739bffb02d2148191e7366a03d08&encoded=0&v=paper_preview&mkt=zh-cn
[33]
Kumar P, Saxena N, Chandra R, et al. Nanotwinning and structural phase transition in CdS quantum dots. Nanoscale Res Lett, 2012, 7:584 doi: 10.1186/1556-276X-7-584
[34]
Schreder B, Dem C, Schmitt M, et al. Raman spectroscopy of Ⅱ-VI semiconductor nanostructures:CdS quantum dots. J Raman Spectrosc, 2003, 34:100 doi: 10.1002/(ISSN)1097-4555
[35]
Zeiri L, Patla I, Acharya S, et al. Raman spectroscopy of ultranarrow CdS nanostructures. J Phys Chem C, 2007, 111:11843 http://cn.bing.com/academic/profile?id=6f5d853fbefe9efdd456e170e2261e3e&encoded=0&v=paper_preview&mkt=zh-cn
[36]
Shiang J, Risbud S H, Alivisatos A P. Resonance Raman studies of the ground and lowest electronic excited state in CdS nanocrystals. J Chem Phys, 1993, 98:8432 doi: 10.1063/1.464501
[37]
Efros A L, Ekimov A I, Kozlowski F, et al. Resonance Raman spectroscopy of electron-hole pairs-polar phonon coupling in semiconductor quantum microcrystals. Solid State Commun, 1991, 78(10):853 doi: 10.1016/0038-1098(91)90242-N
[38]
Nomura S, Kobayashi T. Exciton-LO-phonon couplings in spherical semiconductor microcrystallites. Phys Rev B, 1992, 45:1305 doi: 10.1103/PhysRevB.45.1305
[39]
Pan A L, Liu R B, Yang Q, et al. Stimulated emissions in aligned CdS nanowires at room temperature. J Phys Chem B, 2005, 109:24268 doi: 10.1021/jp055164m
[40]
Maliki H E, Berne'de J C, Marsillac S, et al. Study of the influence of annealing on the properties of CBD-CdS thin films. Appl Surf Sci, 2003, 205:65 doi: 10.1016/S0169-4332(02)01082-6
[41]
Roy P, Srivastava S. A new approach towards the growth of cadmium sulphide thin film by CBD method and its characterization. Mater Chem Phys, 2006, 95:235 doi: 10.1016/j.matchemphys.2005.06.010
[42]
Hota G, Idage S B, Khilar K C. Characterization of nano-sized CdS-Ag2S core-shell nanoparticles using XPS technique. Colloids Surf A, 2007, 293:5 doi: 10.1016/j.colsurfa.2006.06.036
[43]
Zhao F H, Su Q, Xu N S, et al. Selectively hydrothermal and solvothermal growth of CdS nanospheres and nanorods:a facile way to tune finely optical properties. J Mater Sci, 2006, 41:1449 doi: 10.1007/s10853-006-7459-x
[44]
Zhou S M, Feng Y S, Zhang L D. Sonochemical synthesis of large-scale single crystal CdS nanorods. Mater Lett, 2003, 57(19):2936 doi: 10.1016/S0167-577X(02)01400-3
[45]
Acosta D, Magana C, Martinez A, et al. Structural evolution and optical characterization of indium doped cadmium sulfide thin films obtained by spray pyrolysis for different substrate temperatures. Sol Energy Mater Sol Cells, 2004, 82:11 doi: 10.1016/j.solmat.2004.01.001
[46]
Tauc J. Absorption edge and internal electric fields in amorphous semiconductors. Mater Res Bulle, 1970, 5(8):721 doi: 10.1016/0025-5408(70)90112-1
[47]
Enriquez J, Mathew X. Influence of the thickness on structural, optical and electrical properties of chemical bath deposited CdS thin films. Sol Energy Mater Sol Cells, 2003, 76:313 doi: 10.1016/S0927-0248(02)00283-0
[48]
Yadav R, Mishra P, Mishra R, et al. Growth mechanism and optical property of CdS nanoparticles synthesized using amino-acid histidine as chelating agent under sonochemical process. Ultrasonics Sonochemistry, 2010, 17:116 doi: 10.1016/j.ultsonch.2009.04.011
[49]
Dongre J K, Nogriya V, Ramrakhiani M. Structural, optical and photoelectrochemical characterization of CdS nanowire synthesized by chemical bath deposition and wet chemical etching. Appl Surf Sci, 2009, 255:6115 doi: 10.1016/j.apsusc.2009.01.064
[50]
Pedrotti L S, Reynolds D C. Change in structure of blue and green fluorescence in cadmium sulfide at low temperatures. Phys Rev, 1960, 119:1897 doi: 10.1103/PhysRev.119.1897
[51]
Kulp B A, Kelley R H. Displacement of the sulfur atom in CdS by electron bombardment. J Appl Phys, 1960, 31(6):945 doi: 10.1063/1.1735780
[52]
Panda S K, Chakrabarti S, Satpati B, et al. Optical and microstructural characterization of CdS-ZnO nanocomposite thin films prepared by sol-gel technique. J Phys D, 2004, 37:628 doi: 10.1088/0022-3727/37/4/014
[53]
Saunders A, Popov I, Banin U. Synthesis of hybrid CdS-Au colloidal nanostructures. J Phys Chem B, 2006, 110:25421 doi: 10.1021/jp065594s
[54]
Zhao X S, Schroeder J, Persans P D, et al. Resonant-Ramanscattering and photoluminescence studies in glass-composite and colloidal CdS. Phys Rev B, 1991, 43:12580 doi: 10.1103/PhysRevB.43.12580
[55]
Wang Y W, Meng G W, Zhang L D, et al. Catalytic growth of large-scale single-crystal CdS nanowires by physical evaporation and their photoluminescence. Chem Mater, 2002, 14:1773 doi: 10.1021/cm0115564
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3864 Times PDF downloads: 50 Times Cited by: 0 Times

    History

    Received: 29 May 2016 Revised: 26 June 2016 Online: Published: 01 February 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Kiran Diwate, Amit Pawbake, Sachin Rondiya, Rupali Kulkarni, Ravi Waykar, Ashok Jadhavar, Avinash Rokade, Adinath Funde, Kakasaheb Mohite, Manish Shinde, Habib Pathan, Rupesh Devan, Sandesh Jadkar. Substrate temperature dependent studies on properties of chemical spray pyrolysis deposited CdS thin films for solar cell applications[J]. Journal of Semiconductors, 2017, 38(2): 023001. doi: 10.1088/1674-4926/38/2/023001 K Diwate, A Pawbake, S Rondiya, R Kulkarni, R Waykar, A Jadhavar, A Rokade, A Funde, K Mohite, M Shinde, H Pathan, R Devan, S Jadkar. Substrate temperature dependent studies on properties of chemical spray pyrolysis deposited CdS thin films for solar cell applications[J]. J. Semicond., 2017, 38(2): 023001. doi:  10.1088/1674-4926/38/2/023001.Export: BibTex EndNote
      Citation:
      Kiran Diwate, Amit Pawbake, Sachin Rondiya, Rupali Kulkarni, Ravi Waykar, Ashok Jadhavar, Avinash Rokade, Adinath Funde, Kakasaheb Mohite, Manish Shinde, Habib Pathan, Rupesh Devan, Sandesh Jadkar. Substrate temperature dependent studies on properties of chemical spray pyrolysis deposited CdS thin films for solar cell applications[J]. Journal of Semiconductors, 2017, 38(2): 023001. doi: 10.1088/1674-4926/38/2/023001

      K Diwate, A Pawbake, S Rondiya, R Kulkarni, R Waykar, A Jadhavar, A Rokade, A Funde, K Mohite, M Shinde, H Pathan, R Devan, S Jadkar. Substrate temperature dependent studies on properties of chemical spray pyrolysis deposited CdS thin films for solar cell applications[J]. J. Semicond., 2017, 38(2): 023001. doi:  10.1088/1674-4926/38/2/023001.
      Export: BibTex EndNote

      Substrate temperature dependent studies on properties of chemical spray pyrolysis deposited CdS thin films for solar cell applications

      doi: 10.1088/1674-4926/38/2/023001
      Funds:

      Project supported by the Department of Science and Technology(DST), Ministry of New and Renewable Energy(MNRE), Government of India, New Delhi.

      the Department of Science and Technology(DST), Ministry of New and Renewable Energy(MNRE), Government of India, New Delhi 

      More Information
      • Corresponding author: Sandesh Jadkar,Email:sandesh@physics.unipune.ac.in
      • Received Date: 2016-05-29
      • Revised Date: 2016-06-26
      • Published Date: 2017-02-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return