SEMICONDUCTOR DEVICES

Dual material gate doping-less tunnel FET with hetero gate dielectric for enhancement of analog/RF performance

Sunny Anand and R.K. Sarin

+ Author Affiliations

 Corresponding author: Sunny Anand,Email:sunnyanand.ec.13@nitj.ac.in

PDF

Abstract: In this paper, charge-plasma-based tunnel FET is proposed by employing dual material gate with hetero gate dielectric technique and it is named hetero-dielectric dual material gate doping-less TFET(HD_DMG_DLTFET). It is compared with conventional doping-less TFET(DLTFET) and dual material gate doping-less TFET(DMG_DLTFET) on the basis of analog and RF performance. The HD_DMG_DLTFET provides better ON state current(ION=94 μA/μm), ION/IOFF(≈ 1:36×1013), point(≈ 3 mV/dec) and average subthreshold slope(AV-SS=40.40 mV/dec). The proposed device offers low total gate capacitance(Cgg)along with higher drive current. However, with a better transconductance(gm) and cut-off frequency(fT), the HD_DMG_DLTFET can be a good candidate for RF circuitry. The early voltage(VEA) and output conductance(gd) are also moderate for the proposed device with comparison to other devices and therefore can be a candidate for analog devices. From all these simulation results and their study, it is observed that HD_DMG_DLTFET has improved analog/RF performance compared to DLTFET and DMG_DLTFET.

Key words: hetero-gate dielectric materialdual material gatedoping-less TFETaverage subthreshold slopeanalog FOM



[1]
Young K K. Short-channel effect in fully-depleted SOI MOSFETs. IEEE Trans Electron Devices, 1989, 36(2):399 doi: 10.1109/16.19942
[2]
Colinge J P, Lee C W, Afzalian A, et al. Nanowire transistors without junctions. Nat Nanotechnol, 2010, 5(3):225 doi: 10.1038/nnano.2010.15
[3]
Koswatta S O, Lundstrom M S, Nikonov D E. Performance comparison between P-I-N tunneling transistors and conventional MOSFETs. IEEE Trans Electron Devices, 2009, 56(3):456 doi: 10.1109/TED.2008.2011934
[4]
Bernstein K, Cavin R K, Porod W, et al. Device and architectures outlook for beyond CMOS switches. Proc IEEE, 2010, 98:2169 doi: 10.1109/JPROC.2010.2066530
[5]
Boucart K, Ionescu A M. Double gate tunnel FET high-k gate dielectric. IEEE Trans Electron Devices, 2007, 54(7):1725 doi: 10.1109/TED.2007.899389
[6]
Bal P, Akram M W, Mondal P, et al. Performance estimation of sub-30 nm junctionless tunnel FET (JLTFET). J Comput Electron, 2013, 12:782 doi: 10.1007/s10825-013-0483-6
[7]
Cui N, Liang R, Xu J. Heteromaterial gate tunnel field effect transistor with lateral energy band profile modulation. Appl Phys Lett, 2011, 98(14):142105 doi: 10.1063/1.3574363
[8]
Boucart K, Ionescu A M. Length scaling of the double gate tunnel FET with a high-k gate dielectric. Solid-State Electron, 2007, 51(11):1500 http://cn.bing.com/academic/profile?id=abeb152da58cc5a01e71fb93f2fd0c52&encoded=0&v=paper_preview&mkt=zh-cn
[9]
Narang R, Gupta S M, Gupta R S, et al. Effect of temperature and gate stack on the linearity and analog performance of double gate tunnel FET. Berlin Heidelberg:Springer, 2011, 197:466 http://cn.bing.com/academic/profile?id=4630af11ca88b7756c2d4b3a54e7bb04&encoded=0&v=paper_preview&mkt=zh-cn
[10]
Singh G, Amin S I, Anand S, et al. Design of Si0.5Ge0.5 based tunnel field effect transistor and its performance evaluation. Superlattices Microstruct, 2016, 92:143 doi: 10.1016/j.spmi.2016.02.027
[11]
Lee M J, Choi W Y. Effects of device geometry on hetero-gatedielectric tunneling field-effect transistors. IEEE Electron Device Lett, 2012, 33(10):1459 doi: 10.1109/LED.2012.2206790
[12]
Wei L, Ou H, Kuo J M, et al. Dual-material gate (DMG) field effect transistor. IEEE Trans Electron Devices, 1999, 46(5):865 doi: 10.1109/16.760391
[13]
Saurabh S, Kumar M J. Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans Electron Devices, 2011, 58(2):404 doi: 10.1109/TED.2010.2093142
[14]
Damrongplasit N, Shin C, Kim S H, et al. Study of random dopant fluctuation effects in germanium-source tunnel FETs. IEEE Trans Electron Devices, 2011, 58(10):3541 doi: 10.1109/TED.2011.2161990
[15]
Kumar M J. Doping-less tunnel field effect transistor:design and investigation. IEEE Trans Electron Devices, 2013, 60(10):3285 doi: 10.1109/TED.2013.2276888
[16]
Rajasekharan B, Hueting R J E, Salm C, et al. Fabrication and characterization of the charge-plasma diode. IEEE Electron Device Lett, 2010, 31(6):528 doi: 10.1109/LED.2010.2045731
[17]
Hueting R J E, Rajasekharan B, Salm C, et al. The charge plasma p-n diode. IEEE Electron Device Lett, 2008, 29(12):1367 doi: 10.1109/LED.2008.2006864
[18]
Anand S, Amin S I, Sarin R K. Performance analysis of charge plasma based dual electrode tunnel FET. J Semicond, 2016, 37(5):054003 doi: 10.1088/1674-4926/37/5/054003
[19]
Anand S, Amin S I, Sarin R K. Analog performance investigation of dual electrode based doping-less tunnel FET. J Comput Electron, 2016, 15(1):103 http://cn.bing.com/academic/profile?id=9b961f8250fa301cbe698cb2c8ab5606&encoded=0&v=paper_preview&mkt=zh-cn
[20]
Chakraborty S, Mallik A. Subthreshold performance of dualmaterial gate CMOS devices and circuits for ultralow power analog/mixed-signal applications. IEEE Trans Electron Devices, 2008, 55(3):827 doi: 10.1109/TED.2007.914842
[21]
Ram M S, Abdi D B. Single grain boundary dopingless PNPN tunnel FET on recrystallized polysilicon:proposal and theoretical analysis. IEEE J Electron Devices Soc, 2015, 3(3):291 doi: 10.1109/JEDS.2015.2392618
[22]
Amin S I, Sarin R K. Charge-plasma based dual-material and gate-stacked architecture of junctionless transistor for enhanced analog performance. Superlattices Microstruct, 2015, 88:582 doi: 10.1016/j.spmi.2015.10.017
[23]
ATLAS device simulation software. Silvaco Int., Santa Clara, CA, USA, 2012
[24]
Rahi S B, Ghosh B, Bishnoi B. Temperature effect on hetero structure junctionless tunnel FET. J Semicond, 2015, 36(3):034002 doi: 10.1088/1674-4926/36/3/034002
[25]
Huang J H, Liu Z H, Jeng M C, et al. A physical model for MOSFET output resistance. International Electron Devices Meeting, 1992, 13:569 http://cn.bing.com/academic/profile?id=cb9b3981e9f9946aa8603e402034f0bc&encoded=0&v=paper_preview&mkt=zh-cn
[26]
Anand S, Sarin R K. An analysis on ambipolar reduction techniques for charge plasma based tunnel FETs. J Nanoelectron Optoelectron, 2016, 11:543 doi: 10.1166/jno.2016.1922
[27]
Singh S, Kondekar P N, Pal P. Transient performance estimation of charge plasma based negative capacitance junctionless tunnel FET. J Semicond, 2016, 37(2):024003 doi: 10.1088/1674-4926/37/2/024003
[28]
Sivasankaran K, Mallick P S. Impact of parameter fluctuations on RF stability performance of DG tunnel FET. J Semicond, 2015, 36(8):084001 doi: 10.1088/1674-4926/36/8/084001
Fig. 1.  Device structure of (a) DLTFET, (b) DMG_DLTFET and (c) HD_DMG_DLTFET.

Fig. 2.  (Color online) Energy band diagram of DLTFET, DMG_DLTFET and HD_DMG_DLTFET along x-axis near front gate at (a) OFF state ($V_{\mathrm{GS}} = 0 V, V_{\mathrm{DS}} = 1.0 V$) and (b) ON state ($V_{\mathrm{GS}}= V_{\mathrm{DS}} = 1.0 V$).

Fig. 3.  (Color online) Electron concentration of DLTFET, DMG_DLTFET and HD_DMG_DLTFET along x-axis near front gate at OFF state ($V_{\mathrm{GS}} = 0 V, V_{\mathrm{DS}} = 1.0 V$)) and ON state ($V_{\mathrm{GS}} = V_{\mathrm{DS}} = 1.0$ V).

Fig. 4.  (Color online) Electric field distribution of DLTFET, DMG_DLTFET and HD_DMG_DLTFET along x-axis near back gate at ON state ($V_{\mathrm{GS}} = V_{\mathrm{DS}} = 1.0$ V).

Fig. 5.  (Color online) The variation of gate work function $\phi_{\mathrm{M1}}$ with fixed $\phi_{\mathrm{M2}} = 4.7$ eV. (a) ON state current and threshold voltage ($V_{\mathrm{T}}$). (b) average subthreshold slope and $I_{\mathrm{ON}}/I_{\mathrm{OFF}}$ ratio of DMG_DLTFET and HD_DMG_DLTFET ($V_{\mathrm{GS}} = V_{\mathrm{DS}} = 1.0$ V).

Fig. 6.  (Color online) The variation of drain voltage for (a) ON state current and $I_{\mathrm{ON}}/I_{\mathrm{OFF}}$ ratio and (b) threshold voltage and average subthreshold slope of DMG_DLTFET and HD_DMG_DLTFET (constant $V_{\mathrm{GS}} = 1.0$ V).

Fig. 7.  (Color online) ID-VGS characteristics of DLTFET, DMG_DLTFET and HD_DMG_DLTFET at $V_{\mathrm{DS}} = 1.0$ V.

Fig. 8.  (Color online) Transconductance of DLTFET, DMG_DLTFET and HD_DMG_DLTFET at $V_{\mathrm{DS}} = V_{\mathrm{GS}} = 1.0$ V.

Fig. 9.  (Color online) $I_{\mathrm{D}}-V_{\mathrm{DS}}$ characteristics of DLTFET, DMG_DLTFET and HD_DMG_DLTFET at $V_{\mathrm{GS}} =$ 1.0 V.

Fig. 10.  (Color online) The output conductance ($g_{\mathrm{d}}$) of DLTFET, DMG_DLTFET and HD_DMG_DLTFET at $V_{\mathrm{GS}}= 1.0$ V.

Fig. 11.  Drain-induced barrier lowering (DIBL) of DLFET, DMG_DLTFET and HD_DMG_DGTFET.

Fig. 12.  (Color online) Early voltage ($V_{\mathrm{EA}})$ of DLTFET, DMG_DLTFET and HD_DMG_DLTFET with respect to drain voltage at $V_{\mathrm{GS}} = 1.0$ V.

Fig. 13.  (Color online) Total gate capacitance with respect to gate voltage at different drain voltages ($V_{\mathrm{DS}}$ = 0.1, 0.5, 1 V). (a) DLTFET, (b) DMG_DLTFET and (c) HD_DMG_DLTFET.

Fig. 14.  (Color online) Cut-off frequency as a function of gate voltage at $V_{\mathrm{DS}}=1$ V.

Table 1.   Parameters used for DLTFET, DMG_DLTFET and HD_DMG_DLTFET.

Table 2.   Device characteristics of DLTFET, DMG_DLTFET and HD_DMG_DLTFET.

[1]
Young K K. Short-channel effect in fully-depleted SOI MOSFETs. IEEE Trans Electron Devices, 1989, 36(2):399 doi: 10.1109/16.19942
[2]
Colinge J P, Lee C W, Afzalian A, et al. Nanowire transistors without junctions. Nat Nanotechnol, 2010, 5(3):225 doi: 10.1038/nnano.2010.15
[3]
Koswatta S O, Lundstrom M S, Nikonov D E. Performance comparison between P-I-N tunneling transistors and conventional MOSFETs. IEEE Trans Electron Devices, 2009, 56(3):456 doi: 10.1109/TED.2008.2011934
[4]
Bernstein K, Cavin R K, Porod W, et al. Device and architectures outlook for beyond CMOS switches. Proc IEEE, 2010, 98:2169 doi: 10.1109/JPROC.2010.2066530
[5]
Boucart K, Ionescu A M. Double gate tunnel FET high-k gate dielectric. IEEE Trans Electron Devices, 2007, 54(7):1725 doi: 10.1109/TED.2007.899389
[6]
Bal P, Akram M W, Mondal P, et al. Performance estimation of sub-30 nm junctionless tunnel FET (JLTFET). J Comput Electron, 2013, 12:782 doi: 10.1007/s10825-013-0483-6
[7]
Cui N, Liang R, Xu J. Heteromaterial gate tunnel field effect transistor with lateral energy band profile modulation. Appl Phys Lett, 2011, 98(14):142105 doi: 10.1063/1.3574363
[8]
Boucart K, Ionescu A M. Length scaling of the double gate tunnel FET with a high-k gate dielectric. Solid-State Electron, 2007, 51(11):1500 http://cn.bing.com/academic/profile?id=abeb152da58cc5a01e71fb93f2fd0c52&encoded=0&v=paper_preview&mkt=zh-cn
[9]
Narang R, Gupta S M, Gupta R S, et al. Effect of temperature and gate stack on the linearity and analog performance of double gate tunnel FET. Berlin Heidelberg:Springer, 2011, 197:466 http://cn.bing.com/academic/profile?id=4630af11ca88b7756c2d4b3a54e7bb04&encoded=0&v=paper_preview&mkt=zh-cn
[10]
Singh G, Amin S I, Anand S, et al. Design of Si0.5Ge0.5 based tunnel field effect transistor and its performance evaluation. Superlattices Microstruct, 2016, 92:143 doi: 10.1016/j.spmi.2016.02.027
[11]
Lee M J, Choi W Y. Effects of device geometry on hetero-gatedielectric tunneling field-effect transistors. IEEE Electron Device Lett, 2012, 33(10):1459 doi: 10.1109/LED.2012.2206790
[12]
Wei L, Ou H, Kuo J M, et al. Dual-material gate (DMG) field effect transistor. IEEE Trans Electron Devices, 1999, 46(5):865 doi: 10.1109/16.760391
[13]
Saurabh S, Kumar M J. Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans Electron Devices, 2011, 58(2):404 doi: 10.1109/TED.2010.2093142
[14]
Damrongplasit N, Shin C, Kim S H, et al. Study of random dopant fluctuation effects in germanium-source tunnel FETs. IEEE Trans Electron Devices, 2011, 58(10):3541 doi: 10.1109/TED.2011.2161990
[15]
Kumar M J. Doping-less tunnel field effect transistor:design and investigation. IEEE Trans Electron Devices, 2013, 60(10):3285 doi: 10.1109/TED.2013.2276888
[16]
Rajasekharan B, Hueting R J E, Salm C, et al. Fabrication and characterization of the charge-plasma diode. IEEE Electron Device Lett, 2010, 31(6):528 doi: 10.1109/LED.2010.2045731
[17]
Hueting R J E, Rajasekharan B, Salm C, et al. The charge plasma p-n diode. IEEE Electron Device Lett, 2008, 29(12):1367 doi: 10.1109/LED.2008.2006864
[18]
Anand S, Amin S I, Sarin R K. Performance analysis of charge plasma based dual electrode tunnel FET. J Semicond, 2016, 37(5):054003 doi: 10.1088/1674-4926/37/5/054003
[19]
Anand S, Amin S I, Sarin R K. Analog performance investigation of dual electrode based doping-less tunnel FET. J Comput Electron, 2016, 15(1):103 http://cn.bing.com/academic/profile?id=9b961f8250fa301cbe698cb2c8ab5606&encoded=0&v=paper_preview&mkt=zh-cn
[20]
Chakraborty S, Mallik A. Subthreshold performance of dualmaterial gate CMOS devices and circuits for ultralow power analog/mixed-signal applications. IEEE Trans Electron Devices, 2008, 55(3):827 doi: 10.1109/TED.2007.914842
[21]
Ram M S, Abdi D B. Single grain boundary dopingless PNPN tunnel FET on recrystallized polysilicon:proposal and theoretical analysis. IEEE J Electron Devices Soc, 2015, 3(3):291 doi: 10.1109/JEDS.2015.2392618
[22]
Amin S I, Sarin R K. Charge-plasma based dual-material and gate-stacked architecture of junctionless transistor for enhanced analog performance. Superlattices Microstruct, 2015, 88:582 doi: 10.1016/j.spmi.2015.10.017
[23]
ATLAS device simulation software. Silvaco Int., Santa Clara, CA, USA, 2012
[24]
Rahi S B, Ghosh B, Bishnoi B. Temperature effect on hetero structure junctionless tunnel FET. J Semicond, 2015, 36(3):034002 doi: 10.1088/1674-4926/36/3/034002
[25]
Huang J H, Liu Z H, Jeng M C, et al. A physical model for MOSFET output resistance. International Electron Devices Meeting, 1992, 13:569 http://cn.bing.com/academic/profile?id=cb9b3981e9f9946aa8603e402034f0bc&encoded=0&v=paper_preview&mkt=zh-cn
[26]
Anand S, Sarin R K. An analysis on ambipolar reduction techniques for charge plasma based tunnel FETs. J Nanoelectron Optoelectron, 2016, 11:543 doi: 10.1166/jno.2016.1922
[27]
Singh S, Kondekar P N, Pal P. Transient performance estimation of charge plasma based negative capacitance junctionless tunnel FET. J Semicond, 2016, 37(2):024003 doi: 10.1088/1674-4926/37/2/024003
[28]
Sivasankaran K, Mallick P S. Impact of parameter fluctuations on RF stability performance of DG tunnel FET. J Semicond, 2015, 36(8):084001 doi: 10.1088/1674-4926/36/8/084001
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3224 Times PDF downloads: 28 Times Cited by: 0 Times

    History

    Received: 16 May 2016 Revised: 02 August 2016 Online: Published: 01 February 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Sunny Anand, R.K. Sarin. Dual material gate doping-less tunnel FET with hetero gate dielectric for enhancement of analog/RF performance[J]. Journal of Semiconductors, 2017, 38(2): 024001. doi: 10.1088/1674-4926/38/2/024001 S Anand, R K Sarin. Dual material gate doping-less tunnel FET with hetero gate dielectric for enhancement of analog/RF performance[J]. J. Semicond., 2017, 38(2): 024001. doi:  10.1088/1674-4926/38/2/024001.Export: BibTex EndNote
      Citation:
      Sunny Anand, R.K. Sarin. Dual material gate doping-less tunnel FET with hetero gate dielectric for enhancement of analog/RF performance[J]. Journal of Semiconductors, 2017, 38(2): 024001. doi: 10.1088/1674-4926/38/2/024001

      S Anand, R K Sarin. Dual material gate doping-less tunnel FET with hetero gate dielectric for enhancement of analog/RF performance[J]. J. Semicond., 2017, 38(2): 024001. doi:  10.1088/1674-4926/38/2/024001.
      Export: BibTex EndNote

      Dual material gate doping-less tunnel FET with hetero gate dielectric for enhancement of analog/RF performance

      doi: 10.1088/1674-4926/38/2/024001
      Funds:

      the Special Foundation of President of China Academy of Engineering Physics 2014-1-100

      Project supported by the Science and Technology Development Foundation of China Academy of Engineering Physics(No.2014A05011) and the Special Foundation of President of China Academy of Engineering Physics(No.2014-1-100).

      Project supported by the Science and Technology Development Foundation of China Academy of Engineering Physics 2014A05011

      More Information
      • Corresponding author: Sunny Anand,Email:sunnyanand.ec.13@nitj.ac.in
      • Received Date: 2016-05-16
      • Revised Date: 2016-08-02
      • Published Date: 2017-02-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return