SEMICONDUCTOR INTEGRATED CIRCUITS

A monolithic K-band phase-locked loop for microwave radar application

Guangyao Zhou, Shunli Ma, Ning Li, Fan Ye and Junyan Ren

+ Author Affiliations

 Corresponding author: Junyan Ren, Email:junyanren@fudan.edu.cn

PDF

Abstract: A monolithic K-band phase-locked loop (PLL) for microwave radar application is proposed and implemented in this paper. By eliminating the tail transistor and using optimized high-Q LC-tank, the proposed voltage-controlled oscillator (VCO) achieves a tuning range of 18.4 to 23.3 GHz and reduced phase noise. Two cascaded current-mode logic (CML) divide-by-two frequency prescalers are implemented to bridge the frequency gap, in which inductor peaking technique is used in the first stage to further boost allowable input frequency. Six-stage TSPC divider chain is used to provide programmable division ratio from 64 to 127, and a second-order passive loop filter with 825 kHz bandwidth is also integrated on-chip to minimize required external components. The proposed PLL needs only approximately 18.2 μs settling time, and achieves a wide tuning range from 18.4 to 23.3 GHz, with a typical output power of -0.84 dBm and phase noise of 91:92 dBc/Hz@1 MHz. The chip is implemented in TSMC 65 nm CMOS process, and occupies an area of 0.56 mm2 without pads under a 1.2 V single voltage supply.

Key words: CMOS technologyintegrated circuitsphase-locked loopmicrowave



[1]
Cheng J H, Wu M H, Huang H T, et al. A K-band phase-locked loop in 0.18μm CMOS technology for vital sign detection radar. 2014 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio), 2014:1
[2]
Yeh Y L, Chang H Y. Design and analysis of a K-band low-phasenoise phase-locked loop with subharmonically injection-locked technique. IEEE Trans Ultrason, Ferroelectr, Freq Control, 2014, 61(12):1927 doi: 10.1109/TUFFC.2012.005040
[3]
Huang J F, Lai W C, Hsu C M. Chip design of a 24 GHz band low-power phase-locked loop using an injection frequency divider circuit and integrated system for biomedical application. 2014 International Conference on Information Science, Electronics and Electrical Engineering (ISEEE), 2014, 3:2075
[4]
Kashif M, Malik Z Y, Yasin M, et al. K-band PLL based frequency synthesizer. 20096th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 2009:136
[5]
Yu X B, Han S Y, Jin Z M, et al. A class-C VCO based Σ-Δ fraction-N frequency synthesizer with AFC for 802.11ah applications. J Semicond, 2015, 36(9):095003 doi: 10.1088/1674-4926/36/9/095003
[6]
Li Z Q, Jiang Y W, Shu H Y, et al. A 5-GHz frequency synthesizer with AFC for low IF ZigBee transceiver applications. 2011 IEEE 9th International New Circuits and Systems Conference (NEWCAS), 2011:530
[7]
Gardner F M. Phase lock techniques. New Jersey:Wiley, 2005
[8]
Zhong B, Zhu Z M. A 0.1-1.5 GHz, low jitter, area efficient PLL in 55-nm CMOS process. J Semicond, 2016, 37(5):055004 doi: 10.1088/1674-4926/37/5/055004
[9]
Fei W, Yu H, Yeo K S, et al. A 60 GHz VCO with 25.8% tuning range by switching return-path in 65 nm CMOS. 2012 IEEE Asian Solid State Circuits Conference (A-SSCC), 2012:277
[10]
Ye Y, Tian T. A 65 nm CMOS high efficiency 50 GHz VCO with regard to the coupling effect of inductors. J Semicond, 2013, 34(7):75001 doi: 10.1088/1674-4926/34/7/075001
[11]
Vaucher C S, Ferencic I, Locher M, et al. A family of lowpower truly modular programmable dividers in standard 0.35-μm CMOS technology. IEEE J Solid-State Circuits, 2000, 35(7):1039 doi: 10.1109/4.848214
[12]
Rael J J, Abidi A A. Physical processes of phase noise in differential LC oscillators. Custom Integrated Circuits Conference, 2000:569 http://www.academia.edu/20339722/Physical_processes_of_phase_noise_in_differential_LC_oscillators
[13]
Ding Y P, Kennet K O. A 21-GHz 8-modulus prescaler and a 20-GHz phase-locked loop fabricated in 130-nm CMOS. IEEE J Solid-State Circuits, 2007, 42(6):1240 doi: 10.1109/JSSC.2007.897140
[14]
Zhou C Y, Zhang L, Yang D X, et al. A 24-GHz fully integrated phase-locked loop for 60-GHz beamforming. 2012 IEEE 11th International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2012:1
[15]
Kuang L X, Chi B Y, Chen L, et al. A fully-differential phaselocked loop frequency synthesizer for 60-GHz wireless communication. J Semicond, 2014, 35(12):125002 doi: 10.1088/1674-4926/35/12/125002
[16]
Osorio J F, Vaucher C S, Huff B, et al. A 21.7-to-27.8 GHz 2.6-degrees-rms 40 MW frequency synthesizer in 45 nm CMOS for mm-wave communication applications. 2011 IEEE International Solid-State Circuits Conference, San Francisco, CA, 2011:278
Fig. 1.  (Color online) The block diagram of proposed K-band microwave PLL

Fig. 2.  (a) Open-loop and (b) closed-loop system response of proposed PLL

Fig. 3.  Proposed K-band LC -based VCO without tail transistor

Fig. 4.  Detailed schematics of 3-bit digital-controlled capacitor array

Fig. 5.  (Color online) Inductance and Q of inductor versus different inner radius.

Fig. 6.  (Color online) Capacitance and Q of varactor cell versus different number of rows

Fig. 7.  Schematics of CML D2 divider. (a) First stage. (b) Second stage

Fig. 8.  Block diagram of structured MMD built with D2/3 cell.

Fig. 9.  (Color online) (a) Block diagram and (b) transistor implementation of customized flipa€“flop in D2/3 cell

Fig. 10.  Schematics of PFD with differential output and a€?zeroa€? dead-zone

Fig. 11.  (a) Simulated output duty cycle versus input delay with (b) close-up around zero-input.

Fig. 12.  Schematics of differential-input charge pump.

Fig. 13.  (Color online) Simulated charge and sink current versus different output voltage.

Fig. 14.  (Color online) (a) Chip photograph of proposed PLL. (b) Test environment setup

Fig. 15.  PLL open-loop (VCO) tuning curve

Fig. 16.  Transient waveform of LPF output during acquisition.

Fig. 17.  (Color online) (a) Output spectrum and (b) output phase noise of proposed PLL.

Fig. 18.  (a) Measured output power and (b) measured output phase noise at 1 MHz offset versus frequency

Table 1.   DC power consumption of key building blocks.

Table 2.   Performance comparison between similar works

[1]
Cheng J H, Wu M H, Huang H T, et al. A K-band phase-locked loop in 0.18μm CMOS technology for vital sign detection radar. 2014 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio), 2014:1
[2]
Yeh Y L, Chang H Y. Design and analysis of a K-band low-phasenoise phase-locked loop with subharmonically injection-locked technique. IEEE Trans Ultrason, Ferroelectr, Freq Control, 2014, 61(12):1927 doi: 10.1109/TUFFC.2012.005040
[3]
Huang J F, Lai W C, Hsu C M. Chip design of a 24 GHz band low-power phase-locked loop using an injection frequency divider circuit and integrated system for biomedical application. 2014 International Conference on Information Science, Electronics and Electrical Engineering (ISEEE), 2014, 3:2075
[4]
Kashif M, Malik Z Y, Yasin M, et al. K-band PLL based frequency synthesizer. 20096th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 2009:136
[5]
Yu X B, Han S Y, Jin Z M, et al. A class-C VCO based Σ-Δ fraction-N frequency synthesizer with AFC for 802.11ah applications. J Semicond, 2015, 36(9):095003 doi: 10.1088/1674-4926/36/9/095003
[6]
Li Z Q, Jiang Y W, Shu H Y, et al. A 5-GHz frequency synthesizer with AFC for low IF ZigBee transceiver applications. 2011 IEEE 9th International New Circuits and Systems Conference (NEWCAS), 2011:530
[7]
Gardner F M. Phase lock techniques. New Jersey:Wiley, 2005
[8]
Zhong B, Zhu Z M. A 0.1-1.5 GHz, low jitter, area efficient PLL in 55-nm CMOS process. J Semicond, 2016, 37(5):055004 doi: 10.1088/1674-4926/37/5/055004
[9]
Fei W, Yu H, Yeo K S, et al. A 60 GHz VCO with 25.8% tuning range by switching return-path in 65 nm CMOS. 2012 IEEE Asian Solid State Circuits Conference (A-SSCC), 2012:277
[10]
Ye Y, Tian T. A 65 nm CMOS high efficiency 50 GHz VCO with regard to the coupling effect of inductors. J Semicond, 2013, 34(7):75001 doi: 10.1088/1674-4926/34/7/075001
[11]
Vaucher C S, Ferencic I, Locher M, et al. A family of lowpower truly modular programmable dividers in standard 0.35-μm CMOS technology. IEEE J Solid-State Circuits, 2000, 35(7):1039 doi: 10.1109/4.848214
[12]
Rael J J, Abidi A A. Physical processes of phase noise in differential LC oscillators. Custom Integrated Circuits Conference, 2000:569 http://www.academia.edu/20339722/Physical_processes_of_phase_noise_in_differential_LC_oscillators
[13]
Ding Y P, Kennet K O. A 21-GHz 8-modulus prescaler and a 20-GHz phase-locked loop fabricated in 130-nm CMOS. IEEE J Solid-State Circuits, 2007, 42(6):1240 doi: 10.1109/JSSC.2007.897140
[14]
Zhou C Y, Zhang L, Yang D X, et al. A 24-GHz fully integrated phase-locked loop for 60-GHz beamforming. 2012 IEEE 11th International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2012:1
[15]
Kuang L X, Chi B Y, Chen L, et al. A fully-differential phaselocked loop frequency synthesizer for 60-GHz wireless communication. J Semicond, 2014, 35(12):125002 doi: 10.1088/1674-4926/35/12/125002
[16]
Osorio J F, Vaucher C S, Huff B, et al. A 21.7-to-27.8 GHz 2.6-degrees-rms 40 MW frequency synthesizer in 45 nm CMOS for mm-wave communication applications. 2011 IEEE International Solid-State Circuits Conference, San Francisco, CA, 2011:278
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3556 Times PDF downloads: 51 Times Cited by: 0 Times

    History

    Received: 22 May 2016 Revised: 07 August 2016 Online: Published: 01 February 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Guangyao Zhou, Shunli Ma, Ning Li, Fan Ye, Junyan Ren. A monolithic K-band phase-locked loop for microwave radar application[J]. Journal of Semiconductors, 2017, 38(2): 025002. doi: 10.1088/1674-4926/38/2/025002 G Y Zhou, S L Ma, N Li, F Ye, J Y Ren. A monolithic K-band phase-locked loop for microwave radar application[J]. J. Semicond., 2017, 38(2): 025002. doi: 10.1088/1674-4926/38/2/025002.Export: BibTex EndNote
      Citation:
      Guangyao Zhou, Shunli Ma, Ning Li, Fan Ye, Junyan Ren. A monolithic K-band phase-locked loop for microwave radar application[J]. Journal of Semiconductors, 2017, 38(2): 025002. doi: 10.1088/1674-4926/38/2/025002

      G Y Zhou, S L Ma, N Li, F Ye, J Y Ren. A monolithic K-band phase-locked loop for microwave radar application[J]. J. Semicond., 2017, 38(2): 025002. doi: 10.1088/1674-4926/38/2/025002.
      Export: BibTex EndNote

      A monolithic K-band phase-locked loop for microwave radar application

      doi: 10.1088/1674-4926/38/2/025002
      Funds:

      the National High-Tech Research and Development Program of China 2013AA014101

      Project supported by the National High-Tech Research and Development Program of China (No. 2013AA014101)

      More Information
      • Corresponding author: Junyan Ren, Email:junyanren@fudan.edu.cn
      • Received Date: 2016-05-22
      • Revised Date: 2016-08-07
      • Published Date: 2017-02-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return