SEMICONDUCTOR MATERIALS

Electrical and optical property of annealed Te-doped GaSb

Jie Su1, 2, 3, Tong Liu1, Jingming Liu1, Jun Yang1, Guiying Shen1, 2, Yongbiao Bai1, 2, Zhiyuan Dong1, Fangfang Wang4 and Youwen Zhao1, 2,

+ Author Affiliations

 Corresponding author: Zhao Youwen, Email: zhaoyw@semi.ac.cn

PDF

Abstract: GaSb is the most suitable substrate in the epitaxial growth of mixed semiconductors of GaSb system. In this work, Te-doped GaSb bulk crystals with different doping concentration have been annealed at 550 ℃ for 100 h in ambient antimony. The annealed samples have been studied by Hall effect measurement, infrared (IR) optical transmission, Glow discharge mass spectroscopy (GDMS) and photoluminescence (PL) spectroscopy. After annealing, Te-doped GaSb samples exhibit a decrease of carrier concentration and increase of mobility, along with an improvement of below gap IR transmission. Native acceptor related electrical compensation analysis suggests a formation of donor defect with deeper energy level. The mechanism of the variation of the defect and its influence on the material properties are discussed.

Key words: Te-doped GaSbannealingHall effect measurementphotoluminescence spectroscopyIR optical transmission



[1]
Dutta P S, Bhat H L. The physics and technology of gallium antimonide: an emerging optoelectronic material. J Appl Phys 1997, 81: 5821 doi: 10.1063/1.365356
[2]
Milne A G, Polyako A Y. Gallium antimonide device related properties. Solid-State Electron, 1993, 36: 803 doi: 10.1016/0038-1101(93)90002-8
[3]
Lee M, Nicholas D J, Singer K E, et al. A photoluminescence and Hall effect study of GaSb grown by molecular beam epitaxy. J Appl Phys, 1986, 59: 2895 doi: 10.1063/1.336948
[4]
Tao D Y, Cheng Y, Liu J M, et al. Chemical and electrical properties of (NH4)2S passivated GaSb surface. J Semicond, 2015, 36(7): 073006 doi: 10.1088/1674-4926/36/7/073006
[5]
Segawa K, Miki H, Otsubo M, et al. Coherent Gunn oscillations in GaxIn1-xSb. Electron Lett, 1976, 12: 124 doi: 10.1049/el:19760098
[6]
Hilderbrand O, Kuebart W, Benz K W, et al. Ga1-xAlxSb avalanche photodiodes resonant impact ionization with very high ratio of ionization coefficients. IEEE J Quantum Electron, 1981, 17: 284 doi: 10.1109/JQE.1981.1071068
[7]
Esaki L. InAs-GaSb superlattices-synthesized semiconductors and semimetals. J Cryst Growth, 1981, 52: 227 doi: 10.1016/0022-0248(81)90198-6
[8]
Passlack M, Schubert E F, Hobson W S, et al. Ga2O3 films for electronic and optoelectronic applications. J Appl Phys, 1995, 77: 686 doi: 10.1063/1.359055
[9]
Van Der Mbulen Y J. Growth properties of GaSb: the structure of the residual acceptor centres. J Phys Chem Solids, 1967, 28: 25 doi: 10.1016/0022-3697(67)90193-X
[10]
Briggs A G, Challis L J, Phonon scattering by acceptor defects in GaSb and GaSb-InSb alloys. J Phys C, 1969, 2: 1353 doi: 10.1088/0022-3719/2/7/128
[11]
Vlasov A S, Rakova E P, Khvostikov V P, et al. Native defect concentration in Czochralski-grown Te-doped GaSb by photoluminescence. Sol Energy Mater Sol Cells, 2010, 94: 1113 doi: 10.1016/j.solmat.2010.02.038
[12]
Chen X F, Chen N F, Wang J L, et al. Chemical etching of a GaSb crystal incorporated with Mn grown by the Bridgman method under microgravity conditions. J Semicond, 2009, 30: 083006 doi: 10.1088/1674-4926/30/8/083006
[13]
Reijnen L, Brunton R, Grant I R. GaSb single-crystal growth by vertical gradient freeze. J Cryst Growth, 2005, 275: e595 doi: 10.1016/j.jcrysgro.2004.11.003
[14]
Lui M K, Ling C C. Liquid encapsulated Czochralski grown undoped p-type gallium antimonide studied by temperature-dependent Hall measurement. Semicond Sci Tech, 2005, 20: 1157 doi: 10.1088/0268-1242/20/12/002
[15]
Ling C C, Lui M K, Ma S K, et al. Nature of the acceptor responsible for p-type conduction in liquid encapsulated Czochralski-grown undoped gallium antimonide. Appl Phys Lett, 2004, 85: 384 doi: 10.1063/1.1773934
[16]
Sestakova V, Stepanek B. Doping of GaSb single crystals with various elements. J Cryst Growth, 1995, 146: 87 doi: 10.1016/0022-0248(94)00485-4
[17]
Levinshtein M, Rumyantskv S, Shur M. Handbook series on semiconductor parameters. Vol 2. Singapore: World Scientific, 1999
[18]
Liu N K, Zhu B S, Luo J S. Semiconductor physics. Beijing: Publishing House of Electronics Industry, 2008
[19]
Wu M C, Chen C C. Photoluminescence of liquid-phase epitaxial Te-doped GaSb. J Appl Phys, 1993, 73: 8495 doi: 10.1063/1.354085
[20]
Chandola A, Pino R, Dutta P S. Below bandgap optical absorption in tellurium-doped GaSb. Semicond Sci Tech, 2005, 20: 886 doi: 10.1088/0268-1242/20/8/046
[21]
Sharma P C, Verma G S. Hall coefficient, mobility, and resistivity of Te-doped GaSb samples. Phys Rev B, 1972, 5: 1535 doi: 10.1103/PhysRevB.5.1535
[22]
Lee M, Nicholas D J, Singer K E, et al. A photoluminescence and Hall-effect study of GaSb grown by molecular-beam epitaxy. J Appl Phys, 1986, 59: 2895 doi: 10.1063/1.336948
[23]
Kyuregya A S, Lazareva I K, Stuchebn V M, et al. Photoluminescence of gallium antimonide at high excitation levels.1. lightly doped GaSb. Sov Phys Semicond, 1972, 6: 208 https://www.researchgate.net/publication/292011201_PHOTOLUMINESCENCE_OF_GALLIUM_ANTIMONIDE_AT_HIGH_EXCITATION_LEVELS_-_2_HEAVILY_DOPED_GaSb
[24]
Iyer S, Small L, Hegde S M, et al. Low-temperature photoluminescence of Te-doped GaSb grown by liquid phase electroepitaxy. J Appl Phys, 1995, 77: 5902 doi: 10.1063/1.359170
[25]
Dutta P S, Koteswara Rao K S R, Bhat H L, et al. Photoluminescence studies in bulk gallium antimonide. Appl Phys A, 1995, 61: 149 doi: 10.1007/BF01538381
[26]
Nicholas D J, Lee M, Hamilton B, et al. Spectroscopic studies of shallow defects in MBE GaSb. J Cryst Growth, 1987, 81: 298 doi: 10.1016/0022-0248(87)90408-8
[27]
Hakala M, Puska M J, Nieminen R M. Native defects and self-diffusion in GaSb. J Appl Phys, 2002, 91: 4988 doi: 10.1063/1.1462844
[28]
Krause-Rehberg R, Leipner H S, Kupsch A, et al. Positron study of defects in as-grown and plastically deformed GaAs:Te. Phys Rev B, 1994, 49: 2385 doi: 10.1103/PhysRevB.49.2385
Fig. 1.  PL spectra of Te-doped GaSb samples: (a) G40-10-30, (b) G40-12-49, and (c) G40-12-45, taken at 10 K. The solid lines are the best-fit curves which correspond to the as-grown GaSb samples. The spectra reveal emission bands centered at 715, 726, and 744 meV, respectively. The dashed lines are the best-fit curves which correspond to the annealed GaSb samples. The spectra show that the emission bands all appear at 710 meV.

Fig. 2.  FTIR transmission spectra of the n-type Te-doped GaSb samples: (a) G40-10-30, (b) G40-12-49, and (c) G40-12-45, taken in atmospheric conditions at 300 K. The red solid lines correspond to the transmission spectrum of the as-grown GaSb samples. The black lines correspond to the annealed GaSb samples.

Table 2.   Electrical properties of as-grown and annealed GaSb samples at 300 K.

Table 1.   The calculated results in as-grown Te-doped GaSb samples.

Table 3.   The Glow discharge mass spectrometry (GDMS) of annealed GaSb sample.

[1]
Dutta P S, Bhat H L. The physics and technology of gallium antimonide: an emerging optoelectronic material. J Appl Phys 1997, 81: 5821 doi: 10.1063/1.365356
[2]
Milne A G, Polyako A Y. Gallium antimonide device related properties. Solid-State Electron, 1993, 36: 803 doi: 10.1016/0038-1101(93)90002-8
[3]
Lee M, Nicholas D J, Singer K E, et al. A photoluminescence and Hall effect study of GaSb grown by molecular beam epitaxy. J Appl Phys, 1986, 59: 2895 doi: 10.1063/1.336948
[4]
Tao D Y, Cheng Y, Liu J M, et al. Chemical and electrical properties of (NH4)2S passivated GaSb surface. J Semicond, 2015, 36(7): 073006 doi: 10.1088/1674-4926/36/7/073006
[5]
Segawa K, Miki H, Otsubo M, et al. Coherent Gunn oscillations in GaxIn1-xSb. Electron Lett, 1976, 12: 124 doi: 10.1049/el:19760098
[6]
Hilderbrand O, Kuebart W, Benz K W, et al. Ga1-xAlxSb avalanche photodiodes resonant impact ionization with very high ratio of ionization coefficients. IEEE J Quantum Electron, 1981, 17: 284 doi: 10.1109/JQE.1981.1071068
[7]
Esaki L. InAs-GaSb superlattices-synthesized semiconductors and semimetals. J Cryst Growth, 1981, 52: 227 doi: 10.1016/0022-0248(81)90198-6
[8]
Passlack M, Schubert E F, Hobson W S, et al. Ga2O3 films for electronic and optoelectronic applications. J Appl Phys, 1995, 77: 686 doi: 10.1063/1.359055
[9]
Van Der Mbulen Y J. Growth properties of GaSb: the structure of the residual acceptor centres. J Phys Chem Solids, 1967, 28: 25 doi: 10.1016/0022-3697(67)90193-X
[10]
Briggs A G, Challis L J, Phonon scattering by acceptor defects in GaSb and GaSb-InSb alloys. J Phys C, 1969, 2: 1353 doi: 10.1088/0022-3719/2/7/128
[11]
Vlasov A S, Rakova E P, Khvostikov V P, et al. Native defect concentration in Czochralski-grown Te-doped GaSb by photoluminescence. Sol Energy Mater Sol Cells, 2010, 94: 1113 doi: 10.1016/j.solmat.2010.02.038
[12]
Chen X F, Chen N F, Wang J L, et al. Chemical etching of a GaSb crystal incorporated with Mn grown by the Bridgman method under microgravity conditions. J Semicond, 2009, 30: 083006 doi: 10.1088/1674-4926/30/8/083006
[13]
Reijnen L, Brunton R, Grant I R. GaSb single-crystal growth by vertical gradient freeze. J Cryst Growth, 2005, 275: e595 doi: 10.1016/j.jcrysgro.2004.11.003
[14]
Lui M K, Ling C C. Liquid encapsulated Czochralski grown undoped p-type gallium antimonide studied by temperature-dependent Hall measurement. Semicond Sci Tech, 2005, 20: 1157 doi: 10.1088/0268-1242/20/12/002
[15]
Ling C C, Lui M K, Ma S K, et al. Nature of the acceptor responsible for p-type conduction in liquid encapsulated Czochralski-grown undoped gallium antimonide. Appl Phys Lett, 2004, 85: 384 doi: 10.1063/1.1773934
[16]
Sestakova V, Stepanek B. Doping of GaSb single crystals with various elements. J Cryst Growth, 1995, 146: 87 doi: 10.1016/0022-0248(94)00485-4
[17]
Levinshtein M, Rumyantskv S, Shur M. Handbook series on semiconductor parameters. Vol 2. Singapore: World Scientific, 1999
[18]
Liu N K, Zhu B S, Luo J S. Semiconductor physics. Beijing: Publishing House of Electronics Industry, 2008
[19]
Wu M C, Chen C C. Photoluminescence of liquid-phase epitaxial Te-doped GaSb. J Appl Phys, 1993, 73: 8495 doi: 10.1063/1.354085
[20]
Chandola A, Pino R, Dutta P S. Below bandgap optical absorption in tellurium-doped GaSb. Semicond Sci Tech, 2005, 20: 886 doi: 10.1088/0268-1242/20/8/046
[21]
Sharma P C, Verma G S. Hall coefficient, mobility, and resistivity of Te-doped GaSb samples. Phys Rev B, 1972, 5: 1535 doi: 10.1103/PhysRevB.5.1535
[22]
Lee M, Nicholas D J, Singer K E, et al. A photoluminescence and Hall-effect study of GaSb grown by molecular-beam epitaxy. J Appl Phys, 1986, 59: 2895 doi: 10.1063/1.336948
[23]
Kyuregya A S, Lazareva I K, Stuchebn V M, et al. Photoluminescence of gallium antimonide at high excitation levels.1. lightly doped GaSb. Sov Phys Semicond, 1972, 6: 208 https://www.researchgate.net/publication/292011201_PHOTOLUMINESCENCE_OF_GALLIUM_ANTIMONIDE_AT_HIGH_EXCITATION_LEVELS_-_2_HEAVILY_DOPED_GaSb
[24]
Iyer S, Small L, Hegde S M, et al. Low-temperature photoluminescence of Te-doped GaSb grown by liquid phase electroepitaxy. J Appl Phys, 1995, 77: 5902 doi: 10.1063/1.359170
[25]
Dutta P S, Koteswara Rao K S R, Bhat H L, et al. Photoluminescence studies in bulk gallium antimonide. Appl Phys A, 1995, 61: 149 doi: 10.1007/BF01538381
[26]
Nicholas D J, Lee M, Hamilton B, et al. Spectroscopic studies of shallow defects in MBE GaSb. J Cryst Growth, 1987, 81: 298 doi: 10.1016/0022-0248(87)90408-8
[27]
Hakala M, Puska M J, Nieminen R M. Native defects and self-diffusion in GaSb. J Appl Phys, 2002, 91: 4988 doi: 10.1063/1.1462844
[28]
Krause-Rehberg R, Leipner H S, Kupsch A, et al. Positron study of defects in as-grown and plastically deformed GaAs:Te. Phys Rev B, 1994, 49: 2385 doi: 10.1103/PhysRevB.49.2385
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3166 Times PDF downloads: 26 Times Cited by: 0 Times

    History

    Received: 27 April 2016 Revised: 20 June 2016 Online: Published: 01 April 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jie Su, Tong Liu, Jingming Liu, Jun Yang, Guiying Shen, Yongbiao Bai, Zhiyuan Dong, Fangfang Wang, Youwen Zhao. Electrical and optical property of annealed Te-doped GaSb[J]. Journal of Semiconductors, 2017, 38(4): 043001. doi: 10.1088/1674-4926/38/4/043001 J Su, T Liu, J M Liu, J Yang, G Y Shen, Y B Bai, Z Y Dong, F F Wang, Y W Zhao. Electrical and optical property of annealed Te-doped GaSb[J]. J. Semicond., 2017, 38(4): 043001. doi: 10.1088/1674-4926/38/4/043001.Export: BibTex EndNote
      Citation:
      Jie Su, Tong Liu, Jingming Liu, Jun Yang, Guiying Shen, Yongbiao Bai, Zhiyuan Dong, Fangfang Wang, Youwen Zhao. Electrical and optical property of annealed Te-doped GaSb[J]. Journal of Semiconductors, 2017, 38(4): 043001. doi: 10.1088/1674-4926/38/4/043001

      J Su, T Liu, J M Liu, J Yang, G Y Shen, Y B Bai, Z Y Dong, F F Wang, Y W Zhao. Electrical and optical property of annealed Te-doped GaSb[J]. J. Semicond., 2017, 38(4): 043001. doi: 10.1088/1674-4926/38/4/043001.
      Export: BibTex EndNote

      Electrical and optical property of annealed Te-doped GaSb

      doi: 10.1088/1674-4926/38/4/043001
      Funds:

      the National Natural Science Foundation of China 61474104

      the National Natural Science Foundation of China 61504131

      Project supported by the National Natural Science Foundation of China (Nos. 61474104, 61504131)

      More Information
      • Corresponding author: Zhao Youwen, Email: zhaoyw@semi.ac.cn
      • Received Date: 2016-04-27
      • Revised Date: 2016-06-20
      • Published Date: 2017-04-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return