SEMICONDUCTOR DEVICES

Performance analysis of SiGe double-gate N-MOSFET

A. Singh1, , D. Kapoor1 and R. Sharma2

+ Author Affiliations

 Corresponding author: Singh A., Email: singhakshat001.as@gmail.com

PDF

Abstract: The major purpose of this paper is to find an alternative configuration that not only minimizes the limitations of single-gate (SG) MOSFETs but also provides the better replacement for future technology. In this paper, the electrical characteristics of SiGe double-gate N-MOSFET are demonstrated and compared with electrical characteristics of Si double-gate N-MOSFET. Furthermore, in this paper the electrical characteristics of Si double-gate N-MOSFET are demonstrated and compared with electrical characteristics of Si single-gate N-MOSFET. The simulations are carried out for the device at different operational voltages using Cogenda Visual TCAD tool. Moreover, we have designed its structure and studied both Id-Vg characteristics for different voltages namely 0.05, 0.1, 0.5, 0.8, 1 and 1.5 V and Id-Vd characteristics for different voltages namely 0.1, 0.5, 1 and 1.5 V at work functions 4.5, 4.6 and 4.8 eV for this structure. The performance parameters investigated in this paper are threshold voltage, DIBL, subthreshold slope, GIDL, volume inversion and MMCR.

Key words: double gate MOSFETDIBLGIDLvolume inversionSiGeGenius tool



[1]
Mehrotra S R. Simulation study of silicon nanowire field effect transistors (FETs). Master of Science Dissertation, University of Delhi, 2007
[2]
Valinajad H, Hosseini R, Akbari M E. Electrical characteristics of strained double gate MOSFET. Int J Res Rev Appl Sci, 2012, 13(2): 436 http://www.arpapress.com/Volumes/Vol13Issue2/IJRRAS_13_2_07.pdf
[3]
Roy K, Mukhopadhyay S, Meimand H M. Leakage current mechanisms and reduction in techniques in deep-sub micrometer CMOS circuits. Proc IEEE, 2003, 91(2): 305 doi: 10.1109/JPROC.2002.808156
[4]
Rafhay Q, Xu C, Batude P, et al. Revisited approach for the characterization of gate induced drain leakage. Solid-State Electron, 2012, 71(1): 37 https://www.researchgate.net/publication/251998200_Revisited_approach_for_the_characterization_of_Gate_Induced_Drain_Leakage
[5]
Colinge J P. Multi-gate SOI MOSFETs. Microelectron Eng, 2007, 84(9): 2071
[6]
Mohammadi H, Abdullah H, Fu Dee C. A review on modeling the channel potential in multi-gate MOSFETs. Sains Malaysiana Publications, 2014, 43(6): 861 http://www.ukm.my/jsm/pdf_files/SM-PDF-43-6-2014/07%20Hossein%20Mohammadi.pdf
[7]
Ernst T, Cristoloveanu S, Ghibaudo G, et al. Ultimately thin double-gate SOI MOSFETs. IEEE Trans Electron Devices, 2003, 50(3): 830 doi: 10.1109/TED.2003.811371
[8]
Krishnamohan T, Jungemann C, Kim D, et al. High performance, uniaxially-strained Si and Ge, double-gate P-MOSFETs. Microelectron Eng, 2007, 84(9): 2063 http://www.academia.edu/16251397/High_Performance_Uniaxially-Strained_Silicon_and_Germanium_Double-Gate_p-MOSFETs
[9]
[10]
Dubey S, Tiwari P K, Jit S. On-current modeling of short-channel double-gate (DG) MOSFETs with a vertical Gaussian-like doping profile. J Semicond, 2013, 34(5): 1 http://www.oalib.com/paper/1521617
[11]
Subramaniam S, Wale R N A, Joshi S M. Drain current models for single-gate MOSFETs and undoped symmetric and asymmetric double-gate SOI MOSFETs and quantum mechanical effects: a review. Int J Eng Sci Technol, 2013, 5(1): 96 http://www.oalib.com/paper/2096893
[12]
Wagner M. Simulation of thermoelectric devices. Doctorate of Philosophy Dissertation, Vienna University of Technology, 2007
[13]
Kim D. Theoretical performance evaluations of N MOS double gate FETs with high mobility material: strained Ⅲ-Ⅴ, Ge and Si. Doctorate of Philosophy Dissertation Stanford University, 2009
[14]
Sahu D, Tirkey A. Design and simulation of double gate FETs using ATLAS. Bachelors of Technology Project, National Institute of Technology, Rourkela, 2014
[15]
Singh A, Kapoor D, Sharma R. Review of SiGe double gate N-MOSFET. Int J Inform Technol Syst, 2015, 4(1): 19 http://www.academia.edu/14426107/Review_of_SiGe_Double_Gate_N-MOSFET
[16]
Loke A, Wu Z Y, Moallemi R, et al. Constant-current threshold voltage extraction in HSPICE for nanoscale CMOS analog design. Synopsys Users Group (SNUG): Advanced Micro Devices Inc. , Third Edition, 2010
[17]
[18]
Sharma R. Analytical modeling of volume inversion and channel length modulation in fully depleted double gate nanoscale SOI MOSFETs. J Electron Devices, 2013, 18(2): 1553 http://jeldev.org/18_Rajiv%20Sharma.pdf
Fig. 1.  Schematic structure of an N-channel DG-MOSFET using SiGe.

Fig. 2.  (Color online) DG N-MOSFET structure of SiGe before meshing.

Fig. 3.  (Color online) DG N-MOSFET structure of SiGe after meshing.

Fig. 4.  (Color online) Electron density distribution for SiGe DG-MOSFET.

Fig. 5.  (Color online) Electron mobility distribution for SiGe DG-MOSFET.

Fig. 6.  (Color online) Hole density distribution for SiGe DG-MOSFET.

Fig. 7.  (Color online) Hole mobility distribution for SiGe DG-MOSFET.

Fig. 8.  (Color online) Comparison plot of Id-Vg characteristics of SiGe DG-MOSFET at work function equal to 4.8 eV for different values of Vd.

Fig. 9.  (Color online) Comparison plot of Id-Vg characteristics of SiGe DG-MOSFET at Vd=0.05 V for different values of work function.

Fig. 10.  Comparison plot of GIDL for Si DG-MOSFET and for SiGe DG-MOSFET at Vd=0.1 V and work function equal to 4.8 eV.

Fig. 11.  Hole mobility variation for SiGe DG-MOSFET at Vd=0 V and work function equal to 4.8 eV.

Fig. 12.  Electron mobility variation for SiGe DG-MOSFET at Vd=0 V and work function equal to 4.8 eV.

Fig. 13.  Comparison plot of Id-Vd characteristics of SiGe DG-MOSFET at work function equal to 4.5 eV for different values of Vg.

Fig. 14.  Comparison plot of Id-Vd characteristics of SiGe DG-MOSFET at Vg=1.5 V for different values of work function.

Fig. 15.  Comparison plot of Id-Vg characteristics of Si DG-MOSFET and SiGe DG-MOSFET at Vd=0.05 V and work function equal to 4.8 eV.

Fig. 16.  Comparison plot of Id-Vd characteristics of DG-MOSFET using Si and DG-MOSFET using SiGe at Vg=1.5 V and work function equal to 4.5 eV.

Fig. 17.  Comparison plot of Id-Vg characteristics of double-gate MOSFET using Si and single-gate MOSFET using Si at Vd=0.05 V and work function equal to 4.8 eV.

Fig. 18.  Comparison plot of Id-Vd characteristics of Si double-gate MOSFET and Si single-gate MOSFET at Vg=1.5 V and work function equal to 4.5 eV.

Table 1.   Various parameters used in N-channel DG-MOSFET using SiGe.

Table 2.   Comparison between various parameters used in N-channel DG-MOSFET using SiGe and N-channel DG-MOSFET using Si.

Table 3.   Comparison between various parameters used in N-channel SG-MOSFET using Si and N-channel DG-MOSFET using Si.

[1]
Mehrotra S R. Simulation study of silicon nanowire field effect transistors (FETs). Master of Science Dissertation, University of Delhi, 2007
[2]
Valinajad H, Hosseini R, Akbari M E. Electrical characteristics of strained double gate MOSFET. Int J Res Rev Appl Sci, 2012, 13(2): 436 http://www.arpapress.com/Volumes/Vol13Issue2/IJRRAS_13_2_07.pdf
[3]
Roy K, Mukhopadhyay S, Meimand H M. Leakage current mechanisms and reduction in techniques in deep-sub micrometer CMOS circuits. Proc IEEE, 2003, 91(2): 305 doi: 10.1109/JPROC.2002.808156
[4]
Rafhay Q, Xu C, Batude P, et al. Revisited approach for the characterization of gate induced drain leakage. Solid-State Electron, 2012, 71(1): 37 https://www.researchgate.net/publication/251998200_Revisited_approach_for_the_characterization_of_Gate_Induced_Drain_Leakage
[5]
Colinge J P. Multi-gate SOI MOSFETs. Microelectron Eng, 2007, 84(9): 2071
[6]
Mohammadi H, Abdullah H, Fu Dee C. A review on modeling the channel potential in multi-gate MOSFETs. Sains Malaysiana Publications, 2014, 43(6): 861 http://www.ukm.my/jsm/pdf_files/SM-PDF-43-6-2014/07%20Hossein%20Mohammadi.pdf
[7]
Ernst T, Cristoloveanu S, Ghibaudo G, et al. Ultimately thin double-gate SOI MOSFETs. IEEE Trans Electron Devices, 2003, 50(3): 830 doi: 10.1109/TED.2003.811371
[8]
Krishnamohan T, Jungemann C, Kim D, et al. High performance, uniaxially-strained Si and Ge, double-gate P-MOSFETs. Microelectron Eng, 2007, 84(9): 2063 http://www.academia.edu/16251397/High_Performance_Uniaxially-Strained_Silicon_and_Germanium_Double-Gate_p-MOSFETs
[9]
[10]
Dubey S, Tiwari P K, Jit S. On-current modeling of short-channel double-gate (DG) MOSFETs with a vertical Gaussian-like doping profile. J Semicond, 2013, 34(5): 1 http://www.oalib.com/paper/1521617
[11]
Subramaniam S, Wale R N A, Joshi S M. Drain current models for single-gate MOSFETs and undoped symmetric and asymmetric double-gate SOI MOSFETs and quantum mechanical effects: a review. Int J Eng Sci Technol, 2013, 5(1): 96 http://www.oalib.com/paper/2096893
[12]
Wagner M. Simulation of thermoelectric devices. Doctorate of Philosophy Dissertation, Vienna University of Technology, 2007
[13]
Kim D. Theoretical performance evaluations of N MOS double gate FETs with high mobility material: strained Ⅲ-Ⅴ, Ge and Si. Doctorate of Philosophy Dissertation Stanford University, 2009
[14]
Sahu D, Tirkey A. Design and simulation of double gate FETs using ATLAS. Bachelors of Technology Project, National Institute of Technology, Rourkela, 2014
[15]
Singh A, Kapoor D, Sharma R. Review of SiGe double gate N-MOSFET. Int J Inform Technol Syst, 2015, 4(1): 19 http://www.academia.edu/14426107/Review_of_SiGe_Double_Gate_N-MOSFET
[16]
Loke A, Wu Z Y, Moallemi R, et al. Constant-current threshold voltage extraction in HSPICE for nanoscale CMOS analog design. Synopsys Users Group (SNUG): Advanced Micro Devices Inc. , Third Edition, 2010
[17]
[18]
Sharma R. Analytical modeling of volume inversion and channel length modulation in fully depleted double gate nanoscale SOI MOSFETs. J Electron Devices, 2013, 18(2): 1553 http://jeldev.org/18_Rajiv%20Sharma.pdf
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3398 Times PDF downloads: 39 Times Cited by: 0 Times

    History

    Received: 01 July 2016 Revised: 26 October 2016 Online: Published: 01 April 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      A. Singh, D. Kapoor, R. Sharma. Performance analysis of SiGe double-gate N-MOSFET[J]. Journal of Semiconductors, 2017, 38(4): 044003. doi: 10.1088/1674-4926/38/4/044003 A Singh, D Kapoor, R Sharma. Performance analysis of SiGe double-gate N-MOSFET[J]. J. Semicond., 2017, 38(4): 044003. doi:  10.1088/1674-4926/38/4/044003.Export: BibTex EndNote
      Citation:
      A. Singh, D. Kapoor, R. Sharma. Performance analysis of SiGe double-gate N-MOSFET[J]. Journal of Semiconductors, 2017, 38(4): 044003. doi: 10.1088/1674-4926/38/4/044003

      A Singh, D Kapoor, R Sharma. Performance analysis of SiGe double-gate N-MOSFET[J]. J. Semicond., 2017, 38(4): 044003. doi:  10.1088/1674-4926/38/4/044003.
      Export: BibTex EndNote

      Performance analysis of SiGe double-gate N-MOSFET

      doi: 10.1088/1674-4926/38/4/044003
      More Information
      • Corresponding author: Singh A., Email: singhakshat001.as@gmail.com
      • Received Date: 2016-07-01
      • Revised Date: 2016-10-26
      • Published Date: 2017-04-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return