SEMICONDUCTOR DEVICES

Design of the low-loss waveguide coil for interferometric integrated optic gyroscopes

Yao Fei1, Tianshu Yang1, Zhaofeng Li1, Wen Liu1, Xiaodong Wang1, Wanhua Zheng2 and Fuhua Yang1,

+ Author Affiliations

 Corresponding author: Fuhua Yang, Email: fhyang@semi.ac.cn

PDF

Abstract: With the development of manufacturing technology, the propagation loss of the planar waveguide is getting lower and lower, and the shot-noise-limited sensitivity of an IIOG will be greatly improved. When the propagation loss is getting lower, improper coupling-out waveguide in the waveguide coil may lead to non-ignorable bending loss and crosstalk because of the small radius of curvature and X-junction. In this paper, different coupling-out waveguides have been designed. After calculation and optimization by the beam propagation method, we found the proper coupling-out waveguide having relatively low propagation loss, which can improve the sensitivity of the IIOG.

Key words: gyroscopesSagnac effectplanar waveguidesintegrated optics



[1]
Li C, Zhang C, Song N, et al. Polarization-maintaining fiber loop with double optical length and its application to fiber optic gyroscope. Chin Opt Lett, 2011, 9(2): 020604 doi: 10.3788/COL
[2]
Mi J, Zhang C, Li Z, et al. Bias phase and light power dependence of the random walk coefficient of fiber optic gyroscope. Chin Opt Lett, 2006, 4(7): 379 http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXKB200607003.htm
[3]
Yang Y, Zhang W, Ma J, et al. Low cost, practical, all-digital open-loop fiber-optic gyroscope. Chin Opt Lett, 2003, 1(10): 567 https://www.researchgate.net/publication/249341747_Low_cost_practical_all-digital_open-loop_fiber-optic_gyroscope
[4]
Zheng Y, Ren Y, An P, et al. Wide dynamic range experiments on a resonator fiber optic gyro based on closed-loop frequency locking technique. Chin Opt Lett, 2015, 13(2): 020601 doi: 10.3788/COL
[5]
Sagnac G. Lèher lumineux dèontrèpar l'effet du vent relatif d'èher dans un interfèomère en rotation uniforme. CR Acad Sci, 1913, 157: 708
[6]
Mottier P, Pouteau P. Solid state optical gyrometer integrated on silicon. Electron Lett, 1997, 33(23): 1975 doi: 10.1049/el:19971319
[7]
Ciminelli C, Dell'Olio F, Armenise M N. High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation. IEEE Photon J, 2012, 4(5): 1844 doi: 10.1109/JPHOT.2012.2218098
[8]
Ning L, Guo L J, Kong M, et al. Waveguide-type optical passive ring resonator gyro using frequency modulation spectroscopy technique. J Semicond, 2014, 35(12): 124008 doi: 10.1088/1674-4926/35/12/124008
[9]
Lee H, Chen T, Li J, et al. Ultra-low-loss optical delay line on a silicon chip. Nat Commun, 2012, 3: 867 doi: 10.1038/ncomms1876
[10]
Bauters J F, Heck M J, John D D, et al. Planar waveguides with less than 0. 1 dB/m propagation loss fabricated with wafer bonding. Opt Express, 2011, 19(24): 24090
[11]
Srinivasan S, Moreira R, Blumenthal D, et al. Design of integrated hybrid silicon waveguide optical gyroscope. Opt Express, 2014, 22(21): 24988 doi: 10.1364/OE.22.024988
[12]
Zhang T, Liu H, Qian Y, et al. Power loss of X-junction in solid state optical gyrometer simulated by beam propagation method. Proc SPIE, 2005, 5644: 479 doi: 10.1117/12.570300
[13]
Gundavarapu S, Huffman T, Belt M, et al. Integrated ultra-low-loss silicon nitride waveguide coil for optical gyroscopes. Opt Fiber Commun Conf, 2016
[14]
Feit M, Fleck J Jr. Light propagation in graded-index optical fibers. Appl Opt, 1978, 17(24): 3990 doi: 10.1364/AO.17.003990
[15]
Scarmozzino R, Gopinath A, Pregla R, et al. Numerical techniques for modeling guided-wave photonic devices. IEEE J Sel Top Quantum Electron, 2000, 6(1): 150 doi: 10.1109/2944.826883
[16]
Yevick D. A guide to electric field propagation techniques for guided-wave optics. Opt Quantum Electron, 1994, 26(3): S185 doi: 10.1007/BF00384672
[17]
Lefèvre H C. The fiber-optic gyroscope. Artech Hourse, 1992
[18]
Neumann E G. Curved dielectric optical waveguides with reduced transition losses. IEE Proceedings H: Microwaves Optics and Antennas, 1982
[19]
Kitoh T, Takato N, Yasu M, et al. Bending loss reduction in silica-based waveguides by using lateral offsets. J Lightw Technol, 1995, 13(4): 555 doi: 10.1109/50.372465
[20]
Ciminelli C, Dell'Olio F, Campanella C E, et al. Photonic technologies for angular velocity sensing. Adv Opt Photon, 2010, 2(3): 370 doi: 10.1364/AOP.2.000370
[21]
López-Higuera J M. Handbook of optical fibre sensing technology. Wiley, 2002
Fig. 1.  Cross section of the Archimedean spiral waveguide coil chip.

Fig. 2.  Top view of the Archimedean spiral waveguide coil. (a) Single-arc scheme for the coupling-out waveguide. (b) Double-arc scheme for the coupling-out waveguide.

Fig. 3.  Mode overlap mismatch and the optimized offset at each junction of the coupling-out waveguide "g". (a) Input side and output side mode profiles at each junction. (b) Optimized offset between the two waveguide interfaces at each junction.

Fig. 4.  Results of the bending loss calculation of the seven coupling-out waveguides of the two schemes, start radius: 8 mm. (a) Radiation losses. (b) Mode overlap losses. (c) Total bending losses. (d) Bending losses comparison between "c" and "g".

Fig. 5.  Total bending losses of coupling-out waveguide "c" and "g" under different spiral start radius.

Table 1.   Parameters of the seven coupling-out waveguides of the two schemes.

[1]
Li C, Zhang C, Song N, et al. Polarization-maintaining fiber loop with double optical length and its application to fiber optic gyroscope. Chin Opt Lett, 2011, 9(2): 020604 doi: 10.3788/COL
[2]
Mi J, Zhang C, Li Z, et al. Bias phase and light power dependence of the random walk coefficient of fiber optic gyroscope. Chin Opt Lett, 2006, 4(7): 379 http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXKB200607003.htm
[3]
Yang Y, Zhang W, Ma J, et al. Low cost, practical, all-digital open-loop fiber-optic gyroscope. Chin Opt Lett, 2003, 1(10): 567 https://www.researchgate.net/publication/249341747_Low_cost_practical_all-digital_open-loop_fiber-optic_gyroscope
[4]
Zheng Y, Ren Y, An P, et al. Wide dynamic range experiments on a resonator fiber optic gyro based on closed-loop frequency locking technique. Chin Opt Lett, 2015, 13(2): 020601 doi: 10.3788/COL
[5]
Sagnac G. Lèher lumineux dèontrèpar l'effet du vent relatif d'èher dans un interfèomère en rotation uniforme. CR Acad Sci, 1913, 157: 708
[6]
Mottier P, Pouteau P. Solid state optical gyrometer integrated on silicon. Electron Lett, 1997, 33(23): 1975 doi: 10.1049/el:19971319
[7]
Ciminelli C, Dell'Olio F, Armenise M N. High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation. IEEE Photon J, 2012, 4(5): 1844 doi: 10.1109/JPHOT.2012.2218098
[8]
Ning L, Guo L J, Kong M, et al. Waveguide-type optical passive ring resonator gyro using frequency modulation spectroscopy technique. J Semicond, 2014, 35(12): 124008 doi: 10.1088/1674-4926/35/12/124008
[9]
Lee H, Chen T, Li J, et al. Ultra-low-loss optical delay line on a silicon chip. Nat Commun, 2012, 3: 867 doi: 10.1038/ncomms1876
[10]
Bauters J F, Heck M J, John D D, et al. Planar waveguides with less than 0. 1 dB/m propagation loss fabricated with wafer bonding. Opt Express, 2011, 19(24): 24090
[11]
Srinivasan S, Moreira R, Blumenthal D, et al. Design of integrated hybrid silicon waveguide optical gyroscope. Opt Express, 2014, 22(21): 24988 doi: 10.1364/OE.22.024988
[12]
Zhang T, Liu H, Qian Y, et al. Power loss of X-junction in solid state optical gyrometer simulated by beam propagation method. Proc SPIE, 2005, 5644: 479 doi: 10.1117/12.570300
[13]
Gundavarapu S, Huffman T, Belt M, et al. Integrated ultra-low-loss silicon nitride waveguide coil for optical gyroscopes. Opt Fiber Commun Conf, 2016
[14]
Feit M, Fleck J Jr. Light propagation in graded-index optical fibers. Appl Opt, 1978, 17(24): 3990 doi: 10.1364/AO.17.003990
[15]
Scarmozzino R, Gopinath A, Pregla R, et al. Numerical techniques for modeling guided-wave photonic devices. IEEE J Sel Top Quantum Electron, 2000, 6(1): 150 doi: 10.1109/2944.826883
[16]
Yevick D. A guide to electric field propagation techniques for guided-wave optics. Opt Quantum Electron, 1994, 26(3): S185 doi: 10.1007/BF00384672
[17]
Lefèvre H C. The fiber-optic gyroscope. Artech Hourse, 1992
[18]
Neumann E G. Curved dielectric optical waveguides with reduced transition losses. IEE Proceedings H: Microwaves Optics and Antennas, 1982
[19]
Kitoh T, Takato N, Yasu M, et al. Bending loss reduction in silica-based waveguides by using lateral offsets. J Lightw Technol, 1995, 13(4): 555 doi: 10.1109/50.372465
[20]
Ciminelli C, Dell'Olio F, Campanella C E, et al. Photonic technologies for angular velocity sensing. Adv Opt Photon, 2010, 2(3): 370 doi: 10.1364/AOP.2.000370
[21]
López-Higuera J M. Handbook of optical fibre sensing technology. Wiley, 2002
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3201 Times PDF downloads: 17 Times Cited by: 0 Times

    History

    Received: 22 April 2016 Revised: 18 October 2016 Online: Published: 01 April 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yao Fei, Tianshu Yang, Zhaofeng Li, Wen Liu, Xiaodong Wang, Wanhua Zheng, Fuhua Yang. Design of the low-loss waveguide coil for interferometric integrated optic gyroscopes[J]. Journal of Semiconductors, 2017, 38(4): 044009. doi: 10.1088/1674-4926/38/4/044009 Y Fei, T S Yang, Z F Li, W Liu, X D Wang, W H Zheng, F H Yang. Design of the low-loss waveguide coil for interferometric integrated optic gyroscopes[J]. J. Semicond., 2017, 38(4): 044009. doi: 10.1088/1674-4926/38/4/044009.Export: BibTex EndNote
      Citation:
      Yao Fei, Tianshu Yang, Zhaofeng Li, Wen Liu, Xiaodong Wang, Wanhua Zheng, Fuhua Yang. Design of the low-loss waveguide coil for interferometric integrated optic gyroscopes[J]. Journal of Semiconductors, 2017, 38(4): 044009. doi: 10.1088/1674-4926/38/4/044009

      Y Fei, T S Yang, Z F Li, W Liu, X D Wang, W H Zheng, F H Yang. Design of the low-loss waveguide coil for interferometric integrated optic gyroscopes[J]. J. Semicond., 2017, 38(4): 044009. doi: 10.1088/1674-4926/38/4/044009.
      Export: BibTex EndNote

      Design of the low-loss waveguide coil for interferometric integrated optic gyroscopes

      doi: 10.1088/1674-4926/38/4/044009
      Funds:

      the National Natural Science Foundation of China 61274066

      the National Natural Science Foundation of China 61504138

      the National Natural Science Foundation of China 61504138

      the National Key Research and Development Program of China 2016YFA02005003

      Project supported by the National Natural Science Foundation of China (Nos. 61274066, 61504138, c) and the National Key Research and Development Program of China (No. 2016YFA02005003)

      More Information
      • Corresponding author: Fuhua Yang, Email: fhyang@semi.ac.cn
      • Received Date: 2016-04-22
      • Revised Date: 2016-10-18
      • Published Date: 2017-04-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return