SEMICONDUCTOR TECHNOLOGY

A method to transfer an individual graphene flake to a target position with a precision of sub-micrometer

Yubing Wang, Weihong Yin, Qin Han, Xiaohong Yang, Han Ye and Dongdong Yin

+ Author Affiliations

 Corresponding author: Qin Han, Email: hanqin@semi.ac.cn

PDF

Abstract: Graphene field-effect transistors have been intensively studied. However, in order to fabricate devices with more complicated structures, such as the integration with waveguide and other two-dimensional materials, we need to transfer the exfoliated graphene samples to a target position. Due to the small area of exfoliated graphene and its random distribution, the transfer method requires rather high precision. In this paper, we systematically study a method to selectively transfer mechanically exfoliated graphene samples to a target position with a precision of sub-micrometer. To characterize the doping level of this method, we transfer graphene flakes to pre-patterned metal electrodes, forming graphene field-effect transistors. The hole doping of graphene is calculated to be 2.16 × 1012 cm-2. In addition, we fabricate a waveguide-integrated multilayer graphene photodetector to demonstrate the viability and accuracy of this method. A photocurrent as high as 0.4 μA is obtained, corresponding to a photoresponsivity of 0.48 mA/W. The device performs uniformly in nine illumination cycles.

Key words: graphenefield-effect transistorflake



[1]
Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146(9): 351 https://www.researchgate.net/publication/222675408_Ultrahigh_electron_mobility_in_suspended_graphene
[2]
Morozov S V, Novoselov K S, Katsnelson M I, et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett, 2008, 100(1): 016602 doi: 10.1103/PhysRevLett.100.016602
[3]
Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308 doi: 10.1126/science.1156965
[4]
Mak K F, Sfeir M Y, Wu Y, et al. Measurement of the optical conductivity of graphene. Phys Rev Lett, 2008, 101(19): 196405 doi: 10.1103/PhysRevLett.101.196405
[5]
Lee E J H, Balasubramanian K, Weitz R T, et al. Contact and edge effects in graphene devices. Nat Nanotechnol, 2008, 3(8): 486 doi: 10.1038/nnano.2008.172
[6]
Xia F, Mueller T, Lin Y, et al. Ultrafast graphene photodetector. Nat Nanotechnol, 2009, 4(12): 839 doi: 10.1038/nnano.2009.292
[7]
Freitag M, Low T, Xia F, et al. Photoconductivity of biased graphene. Nat Photonics, 2013, 7(1): 53 http://people.ece.umn.edu/groups/tlow/Publications_files/nphoton.2012.314.pdf
[8]
Schall D, Neumaier D, Mohsin M, et al. 50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems. ACS Photonics, 2014, 1(9): 781 doi: 10.1021/ph5001605
[9]
Youngblood N, Anugrah Y, Ma R, et al. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett, 2014, 14(5): 2741 doi: 10.1021/nl500712u
[10]
Liu M, Yin X, Ulin-Avila E, et al. A graphene-based broadband optical modulator. Nature, 2011, 474(7349): 64 doi: 10.1038/nature10067
[11]
Liu M, Yin X, Zhang X. Double-layer graphene optical modulator. Nano Lett, 2012, 12(3): 1482 doi: 10.1021/nl204202k
[12]
Gan S, Cheng C, Zhan Y, et al. A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale, 2015, 7(47): 20249 doi: 10.1039/C5NR05084G
[13]
Phare C T, Lee Y H D, Cardenas J, et al. 30 GHz Zeno-based graphene electro-optic modulator. arXiv preprint arXiv: 1411. 2053, 2014
[14]
Liu C H, Chang Y C, Norris T B, et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat Nanotechnol, 2014, 9(4): 273 doi: 10.1038/nnano.2014.31
[15]
Zhang W, Chuu C P, Huang J K, et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci Rep, 2014, 4: 32826 http://www.nature.com/articles/srep03826
[16]
Xu H, Wu J, Feng Q, et al. High responsivity and gate tunable graphene-MoS2 hybrid phototransistor. Small, 2014, 10(11): 2300 doi: 10.1002/smll.201303670
[17]
Gao L, Ni G X, Liu Y, et al. Face-to-face transfer of wafer-scale graphene films. Nature, 2014, 505(7482): 190 https://www.researchgate.net/profile/Bo_Liu32/publication/259321039_Face-to-face_transfer_of_wafer-scale_graphene_films/links/56e2395b08ae3328e076b7fb.pdf
[18]
Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010, 5(8): 574 doi: 10.1038/nnano.2010.132
[19]
Liang X, Sperling B A, Calizo I, et al. Toward clean and crackless transfer of graphene. ACS Nano, 2011, 5(11): 9144 doi: 10.1021/nn203377t
[20]
Moser J, Barreiro A, Bachtold A. Current-induced cleaning of graphene. Appl Phys Lett, 2007, 91(16): 163513 doi: 10.1063/1.2789673
[21]
Lin Y C, Lu C C, Yeh C H, et al. Graphene annealing: how clean can it be. Nano Lett, 2011, 12(1): 414 https://s3-eu-west-1.amazonaws.com/pstorage-acs-6854636/4206538/nl203733r_si_001.pdf
[22]
Casiraghi C, Pisana S, Novoselov K S, et al. Raman fingerprint of charged impurities in graphene. Appl Phys Lett, 2007, 91(23): 233108 doi: 10.1063/1.2818692
Fig. 1.  Schematical diagrams for the transfer process. (a) Graphene flake (black hexagonal lattice) and needless bulk graphite piece (yellow polygon) are mechanically exfoliated on the Si/SiO$_{\mathrm{2}}$ substrate. (b) A layer of PMMA is spin-coated. (c) The PMMA membrane is released from the Si/SiO$_{\mathrm{2}}$ substrate in 1 mol/L NaOH solution at 80°. (d) Electron-beam lithography is performed to pattern a transfer window for graphene. (e) The PMMA membrane and target substrate are brought into contact and the graphene flake attaches to the SOI substrate as water evaporates. (f) The target substrate is cleaned in acetone, ethanol and DI water to remove PMMA.

Fig. 2.  (a) A microscope image of the as-exfoliated graphene flake. (b) A microscope image of the graphene FET. (c) A typical characteristic curve of a graphene FET, showing the charge neutralized point at 32 V. Inset gives the schematic of the device.

Fig. 3.  (Color online) (a) A top-view false-color scanning electron microscope image of the device, displaying graphene (purple), metal leads (yellow), unetched silicon (pink) and etched region (green). Scale bar is 10 $\mu $m. (b) Raman spectrum at 488 nm. The D peak around 1350 cm$^{\mathrm{-1}}$ is negligible. (c) Photocurrent $I_{\mathrm{pc}}$ versus bias voltage $V_{\mathrm{b}}$ curve. (d) The time-resolved profile of the device, showing uniform performances in nine cycles.

[1]
Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146(9): 351 https://www.researchgate.net/publication/222675408_Ultrahigh_electron_mobility_in_suspended_graphene
[2]
Morozov S V, Novoselov K S, Katsnelson M I, et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett, 2008, 100(1): 016602 doi: 10.1103/PhysRevLett.100.016602
[3]
Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308 doi: 10.1126/science.1156965
[4]
Mak K F, Sfeir M Y, Wu Y, et al. Measurement of the optical conductivity of graphene. Phys Rev Lett, 2008, 101(19): 196405 doi: 10.1103/PhysRevLett.101.196405
[5]
Lee E J H, Balasubramanian K, Weitz R T, et al. Contact and edge effects in graphene devices. Nat Nanotechnol, 2008, 3(8): 486 doi: 10.1038/nnano.2008.172
[6]
Xia F, Mueller T, Lin Y, et al. Ultrafast graphene photodetector. Nat Nanotechnol, 2009, 4(12): 839 doi: 10.1038/nnano.2009.292
[7]
Freitag M, Low T, Xia F, et al. Photoconductivity of biased graphene. Nat Photonics, 2013, 7(1): 53 http://people.ece.umn.edu/groups/tlow/Publications_files/nphoton.2012.314.pdf
[8]
Schall D, Neumaier D, Mohsin M, et al. 50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems. ACS Photonics, 2014, 1(9): 781 doi: 10.1021/ph5001605
[9]
Youngblood N, Anugrah Y, Ma R, et al. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett, 2014, 14(5): 2741 doi: 10.1021/nl500712u
[10]
Liu M, Yin X, Ulin-Avila E, et al. A graphene-based broadband optical modulator. Nature, 2011, 474(7349): 64 doi: 10.1038/nature10067
[11]
Liu M, Yin X, Zhang X. Double-layer graphene optical modulator. Nano Lett, 2012, 12(3): 1482 doi: 10.1021/nl204202k
[12]
Gan S, Cheng C, Zhan Y, et al. A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale, 2015, 7(47): 20249 doi: 10.1039/C5NR05084G
[13]
Phare C T, Lee Y H D, Cardenas J, et al. 30 GHz Zeno-based graphene electro-optic modulator. arXiv preprint arXiv: 1411. 2053, 2014
[14]
Liu C H, Chang Y C, Norris T B, et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat Nanotechnol, 2014, 9(4): 273 doi: 10.1038/nnano.2014.31
[15]
Zhang W, Chuu C P, Huang J K, et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci Rep, 2014, 4: 32826 http://www.nature.com/articles/srep03826
[16]
Xu H, Wu J, Feng Q, et al. High responsivity and gate tunable graphene-MoS2 hybrid phototransistor. Small, 2014, 10(11): 2300 doi: 10.1002/smll.201303670
[17]
Gao L, Ni G X, Liu Y, et al. Face-to-face transfer of wafer-scale graphene films. Nature, 2014, 505(7482): 190 https://www.researchgate.net/profile/Bo_Liu32/publication/259321039_Face-to-face_transfer_of_wafer-scale_graphene_films/links/56e2395b08ae3328e076b7fb.pdf
[18]
Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010, 5(8): 574 doi: 10.1038/nnano.2010.132
[19]
Liang X, Sperling B A, Calizo I, et al. Toward clean and crackless transfer of graphene. ACS Nano, 2011, 5(11): 9144 doi: 10.1021/nn203377t
[20]
Moser J, Barreiro A, Bachtold A. Current-induced cleaning of graphene. Appl Phys Lett, 2007, 91(16): 163513 doi: 10.1063/1.2789673
[21]
Lin Y C, Lu C C, Yeh C H, et al. Graphene annealing: how clean can it be. Nano Lett, 2011, 12(1): 414 https://s3-eu-west-1.amazonaws.com/pstorage-acs-6854636/4206538/nl203733r_si_001.pdf
[22]
Casiraghi C, Pisana S, Novoselov K S, et al. Raman fingerprint of charged impurities in graphene. Appl Phys Lett, 2007, 91(23): 233108 doi: 10.1063/1.2818692
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3356 Times PDF downloads: 21 Times Cited by: 0 Times

    History

    Received: 16 June 2016 Revised: 17 November 2016 Online: Published: 01 April 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yubing Wang, Weihong Yin, Qin Han, Xiaohong Yang, Han Ye, Dongdong Yin. A method to transfer an individual graphene flake to a target position with a precision of sub-micrometer[J]. Journal of Semiconductors, 2017, 38(4): 046001. doi: 10.1088/1674-4926/38/4/046001 Y B Wang, W H Yin, Q Han, X H Yang, H Ye, D D Yin. A method to transfer an individual graphene flake to a target position with a precision of sub-micrometer[J]. J. Semicond., 2017, 38(4): 046001. doi: 10.1088/1674-4926/38/4/046001.Export: BibTex EndNote
      Citation:
      Yubing Wang, Weihong Yin, Qin Han, Xiaohong Yang, Han Ye, Dongdong Yin. A method to transfer an individual graphene flake to a target position with a precision of sub-micrometer[J]. Journal of Semiconductors, 2017, 38(4): 046001. doi: 10.1088/1674-4926/38/4/046001

      Y B Wang, W H Yin, Q Han, X H Yang, H Ye, D D Yin. A method to transfer an individual graphene flake to a target position with a precision of sub-micrometer[J]. J. Semicond., 2017, 38(4): 046001. doi: 10.1088/1674-4926/38/4/046001.
      Export: BibTex EndNote

      A method to transfer an individual graphene flake to a target position with a precision of sub-micrometer

      doi: 10.1088/1674-4926/38/4/046001
      Funds:

      the National Natural Foundation of China 61176053

      Project supported by the National Key Research and Development Program of China (No. 2016YFB0402404), the High-Tech Research and Development Program of China (Nos. 2013AA031401, 2015AA016902, 2015AA016904), and the National Natural Foundation of China (Nos. 61674136, 61176053, 61274069, 61435002)

      the High-Tech Research and Development Program of China 2015AA016902

      the National Key Research and Development Program of China 2016YFB0402404

      the National Natural Foundation of China 61435002

      the High-Tech Research and Development Program of China 2013AA031401

      the High-Tech Research and Development Program of China 2015AA016904

      the National Natural Foundation of China 61274069

      the National Natural Foundation of China 61674136

      More Information
      • Corresponding author: Qin Han, Email: hanqin@semi.ac.cn
      • Received Date: 2016-06-16
      • Revised Date: 2016-11-17
      • Published Date: 2017-04-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return