INVITED PAPERS

Fabrication of room temperature continuous-wave operation GaN-based ultraviolet laser diodes

Degang Zhao1, 2, , Jing Yang1, Zongshun Liu1, Ping Chen1, Jianjun Zhu1, Desheng Jiang1, Yongsheng Shi1, Hai Wang1, Lihong Duan1, Liqun Zhang3 and Hui Yang3

+ Author Affiliations

 Corresponding author: Degang Zhao, Email: dgzhao@red.semi.ac.cn

PDF

Abstract: Two kinds of continuous-wave GaN-based ultraviolet laser diodes (LDs) operated at room temperature and with different emission wavelengths are demonstrated.The LDs epitaxial layers are grown on GaN substrate by metalorganic chemical vapor deposition, with a 10×600 μm2 ridge waveguide structure.The electrical and optical characteristics of the ultraviolet LDs are investigated under direct-current injection at room temperature. The stimulated emission peak wavelength of first LD is 392.9 nm, the threshold current density and voltage is 1.5 kA/cm2 and 5.0 V, respectively.The output light power is 80 mW under the 4.0 kA/cm2 injection current density. The stimulated emission peak wavelength of second LD is 381.9 nm, the threshold current density the voltage is 2.8 kA/cm2 and 5.5 V, respectively.The output light power is 14 mW under a 4.0 kA/cm2 injection current density.

Key words: GaN-based ultraviolet laser diodescontinuous-wave operationthreshold current



[1]
Amano H, Sawaki N, Akasaki I, et al. Metalorganic vapor-phase epitaxial-growth of a high-quality GaN using an AlN buffer layer. Appl Phys Lett, 1986, 48: 353 doi: 10.1063/1.96549
[2]
Nakamura S, Senoh M, Nagahama S, et al. InGaN-based multiquantum-well-structure laser diodes. Jpn J Appl Phys, Part 2, 1996, 35: L74 doi: 10.1143/JJAP.35.L74
[3]
Nakamura S. The roles of structural imperfections in InGaNbased blue light-emitting diodes and laser diodes. Science, 1998, 281: 956 doi: 10.1126/science.281.5379.956
[4]
Hardy M T, Feezell D F, DenBaars S P, et al. Group Ⅲ-nitride lasers: a materials perspective. Mater Today, 2011, 14: 408 doi: 10.1016/S1369-7021(11)70185-7
[5]
Jiang L R, Liu J P, Tian A Q, et al. GaN-based green laser diodes. J Semicond, 2016, 37: 111001 doi: 10.1088/1674-4926/37/11/111001
[6]
Nagahama S, Yanamoto T, Sano M, et al. Study of GaN-based laser diodes in near ultraviolet region. Jpn J Appl Phys, 2002, 41: 5 doi: 10.1143/JJAP.41.5
[7]
Taketomi H, Aoki Y, Takagi Y, et al. Over 1 W record-peakpower operation of a 338 nm AlGaN multiple-quantum-well laser diode on a GaN substrate. Jpn J Appl Phys, 2016, 55: 05FJ05 https://www.researchgate.net/publication/301237819_Over_1_W_record-peak-power_operation_of_a_338_nm_AlGaN_multiple-quantum-well_laser_diode_on_a_GaN_substrate
[8]
Masui S, Matsuyama Y, Yanamoto T, et al. 365 nm ultraviolet laser diodes composed of quaternary AlInGaN alloy. Jpn J Appl Phys, 2003, 42: L1318 doi: 10.1143/JJAP.42.L1318
[9]
Kneissl M, Treat D W, Teepe M, et al. Continuous-wave operation of ultraviolet InGaN/InAlGaN multiple-quantum-well laser diodes. Appl Phys Lett, 2003, 82: 2386 doi: 10.1063/1.1568160
[10]
Nagahama S, Yanamoto T, Sano M, et al. Ultraviolet GaN single quantum well laser diodes. Jpn J Appl Phys, Part 2, 2001, 40: L785 doi: 10.1143/JJAP.40.L785
[11]
Kneissl M, Yang Z H, Teepe M, et al. Ultraviolet semiconductor laser diodes on bulk AlN. J Appl Phys, 2007, 101: 123103 doi: 10.1063/1.2747546
[12]
Yoshida H, Takagi Y, Kuwabara M, et al. Entirely crack-free ultraviolet GaN/AlGaN laser diodes grown on 2-in. sapphire substrate. Jpn J Appl Phys, 2007, 46: 5782 doi: 10.1143/JJAP.46.5782
[13]
Kuwabara M, Yamashita Y, Torii K, et al. Laser operation of nitride laser diodes with GaN well layer in 340 nm band. Jpn J Appl Phys, 2013, 52: 08JG10 http://adsabs.harvard.edu/abs/2013JaJAP..52hJG10K
[14]
Yoshida H, Kuwabara M, Yamashita Y, et al. AlGaN-based laser diodes for the short-wavelength ultraviolet region. New J Phys, 2009, 11: 125013 doi: 10.1088/1367-2630/11/12/125013
[15]
Yang J, Zhao D G, Jiang D S, et al. Investigation on the compensation effect of residual carbon impurities in low temperature grown Mg doped GaN films. J Appl Phys, 2014, 115: 163704 doi: 10.1063/1.4873957
[16]
Yang J, Zhao D G, Jiang D S, et al. Emission efficiency enhanced by reducing the concentration of residual carbon impurities in In-GaN/GaN multiple quantum well light emitting diodes. Opt Express, 2016, 24: 13824 doi: 10.1364/OE.24.013824
[17]
Wu L L, Zhao D G, Jiang D S, et al. Effects of thin heavily Mgdoped GaN capping layer on ohmic contact formation of p-type GaN. Semicond Sci Technol, 2013, 28: 105020 doi: 10.1088/0268-1242/28/10/105020
[18]
Li X, Zhao D G, Jiang D S, et al. The effectiveness of electron blocking layer in InGaN-based laser diodes with different indium content. Phys Status Solidi A, 2016, 213: 2223 doi: 10.1002/pssa.v213.8
[19]
Le L C, Zhao D G, Jiang D S, et al. Suppression of electron leakage by inserting a thin undoped InGaN layer prior to electron blocking layer in InGaN-based blue-violet laser diodes. Opt Express, 2014, 22: 11392 doi: 10.1364/OE.22.011392
[20]
Zhao D G, Jiang D S, Le L C, et al. Performance Improvement of GaN-based violet laser diodes. Chin Phys Lett, 2017, 34: 017101 doi: 10.1088/0256-307X/34/1/017101
Fig. 1.  Schematic diagram of the epitaxial layer structure for GaNbased ultraviolet laser diodes.

Fig. 2.  The output optical power and forward-bias voltage of LD1 as a function of injection direct-current measured at room temperature. The threshold current is taken as 90 mA, and the corresponding threshold current density is 1.5 kA/cm$^{{2}}$.

Fig. 3.  The optical spectrum of stimulated emission for LD1 under the injection current of 110 mA. The peak wavelength is about 392.9 nm. The inset shows far field pattern of the laser beam in a blue color observed when LD1 illuminates white copying paper.

Fig. 4.  The LD2 output optical power and forward-bias voltage as a function of injection direct-current measured at room temperature. The threshold current is taken as 170 mA, and the corresponding threshold current density is 2.8 kA/cm$^{{2}}$.

Fig. 5.  The optical spectrum of LD2 under the injection current of 190 mA, the peak wavelength is about 381.9 nm. The inset shows far field pattern of the laser beam in a blue color observed when LD2 illuminates white copying paper.

[1]
Amano H, Sawaki N, Akasaki I, et al. Metalorganic vapor-phase epitaxial-growth of a high-quality GaN using an AlN buffer layer. Appl Phys Lett, 1986, 48: 353 doi: 10.1063/1.96549
[2]
Nakamura S, Senoh M, Nagahama S, et al. InGaN-based multiquantum-well-structure laser diodes. Jpn J Appl Phys, Part 2, 1996, 35: L74 doi: 10.1143/JJAP.35.L74
[3]
Nakamura S. The roles of structural imperfections in InGaNbased blue light-emitting diodes and laser diodes. Science, 1998, 281: 956 doi: 10.1126/science.281.5379.956
[4]
Hardy M T, Feezell D F, DenBaars S P, et al. Group Ⅲ-nitride lasers: a materials perspective. Mater Today, 2011, 14: 408 doi: 10.1016/S1369-7021(11)70185-7
[5]
Jiang L R, Liu J P, Tian A Q, et al. GaN-based green laser diodes. J Semicond, 2016, 37: 111001 doi: 10.1088/1674-4926/37/11/111001
[6]
Nagahama S, Yanamoto T, Sano M, et al. Study of GaN-based laser diodes in near ultraviolet region. Jpn J Appl Phys, 2002, 41: 5 doi: 10.1143/JJAP.41.5
[7]
Taketomi H, Aoki Y, Takagi Y, et al. Over 1 W record-peakpower operation of a 338 nm AlGaN multiple-quantum-well laser diode on a GaN substrate. Jpn J Appl Phys, 2016, 55: 05FJ05 https://www.researchgate.net/publication/301237819_Over_1_W_record-peak-power_operation_of_a_338_nm_AlGaN_multiple-quantum-well_laser_diode_on_a_GaN_substrate
[8]
Masui S, Matsuyama Y, Yanamoto T, et al. 365 nm ultraviolet laser diodes composed of quaternary AlInGaN alloy. Jpn J Appl Phys, 2003, 42: L1318 doi: 10.1143/JJAP.42.L1318
[9]
Kneissl M, Treat D W, Teepe M, et al. Continuous-wave operation of ultraviolet InGaN/InAlGaN multiple-quantum-well laser diodes. Appl Phys Lett, 2003, 82: 2386 doi: 10.1063/1.1568160
[10]
Nagahama S, Yanamoto T, Sano M, et al. Ultraviolet GaN single quantum well laser diodes. Jpn J Appl Phys, Part 2, 2001, 40: L785 doi: 10.1143/JJAP.40.L785
[11]
Kneissl M, Yang Z H, Teepe M, et al. Ultraviolet semiconductor laser diodes on bulk AlN. J Appl Phys, 2007, 101: 123103 doi: 10.1063/1.2747546
[12]
Yoshida H, Takagi Y, Kuwabara M, et al. Entirely crack-free ultraviolet GaN/AlGaN laser diodes grown on 2-in. sapphire substrate. Jpn J Appl Phys, 2007, 46: 5782 doi: 10.1143/JJAP.46.5782
[13]
Kuwabara M, Yamashita Y, Torii K, et al. Laser operation of nitride laser diodes with GaN well layer in 340 nm band. Jpn J Appl Phys, 2013, 52: 08JG10 http://adsabs.harvard.edu/abs/2013JaJAP..52hJG10K
[14]
Yoshida H, Kuwabara M, Yamashita Y, et al. AlGaN-based laser diodes for the short-wavelength ultraviolet region. New J Phys, 2009, 11: 125013 doi: 10.1088/1367-2630/11/12/125013
[15]
Yang J, Zhao D G, Jiang D S, et al. Investigation on the compensation effect of residual carbon impurities in low temperature grown Mg doped GaN films. J Appl Phys, 2014, 115: 163704 doi: 10.1063/1.4873957
[16]
Yang J, Zhao D G, Jiang D S, et al. Emission efficiency enhanced by reducing the concentration of residual carbon impurities in In-GaN/GaN multiple quantum well light emitting diodes. Opt Express, 2016, 24: 13824 doi: 10.1364/OE.24.013824
[17]
Wu L L, Zhao D G, Jiang D S, et al. Effects of thin heavily Mgdoped GaN capping layer on ohmic contact formation of p-type GaN. Semicond Sci Technol, 2013, 28: 105020 doi: 10.1088/0268-1242/28/10/105020
[18]
Li X, Zhao D G, Jiang D S, et al. The effectiveness of electron blocking layer in InGaN-based laser diodes with different indium content. Phys Status Solidi A, 2016, 213: 2223 doi: 10.1002/pssa.v213.8
[19]
Le L C, Zhao D G, Jiang D S, et al. Suppression of electron leakage by inserting a thin undoped InGaN layer prior to electron blocking layer in InGaN-based blue-violet laser diodes. Opt Express, 2014, 22: 11392 doi: 10.1364/OE.22.011392
[20]
Zhao D G, Jiang D S, Le L C, et al. Performance Improvement of GaN-based violet laser diodes. Chin Phys Lett, 2017, 34: 017101 doi: 10.1088/0256-307X/34/1/017101
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3418 Times PDF downloads: 84 Times Cited by: 0 Times

    History

    Received: 29 March 2017 Revised: Online: Published: 01 May 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Degang Zhao, Jing Yang, Zongshun Liu, Ping Chen, Jianjun Zhu, Desheng Jiang, Yongsheng Shi, Hai Wang, Lihong Duan, Liqun Zhang, Hui Yang. Fabrication of room temperature continuous-wave operation GaN-based ultraviolet laser diodes[J]. Journal of Semiconductors, 2017, 38(5): 051001. doi: 10.1088/1674-4926/38/5/051001 D G Zhao, J Yang, Z S Liu, P Chen, J J Zhu, D S Jiang, Y S Shi, H Wang, L H Duan, L Q Zhang, H Yang. Fabrication of room temperature continuous-wave operation GaN-based ultraviolet laser diodes[J]. J. Semicond., 2017, 38(5): 051001. doi: 10.1088/1674-4926/38/5/051001.Export: BibTex EndNote
      Citation:
      Degang Zhao, Jing Yang, Zongshun Liu, Ping Chen, Jianjun Zhu, Desheng Jiang, Yongsheng Shi, Hai Wang, Lihong Duan, Liqun Zhang, Hui Yang. Fabrication of room temperature continuous-wave operation GaN-based ultraviolet laser diodes[J]. Journal of Semiconductors, 2017, 38(5): 051001. doi: 10.1088/1674-4926/38/5/051001

      D G Zhao, J Yang, Z S Liu, P Chen, J J Zhu, D S Jiang, Y S Shi, H Wang, L H Duan, L Q Zhang, H Yang. Fabrication of room temperature continuous-wave operation GaN-based ultraviolet laser diodes[J]. J. Semicond., 2017, 38(5): 051001. doi: 10.1088/1674-4926/38/5/051001.
      Export: BibTex EndNote

      Fabrication of room temperature continuous-wave operation GaN-based ultraviolet laser diodes

      doi: 10.1088/1674-4926/38/5/051001
      Funds:

      Projects the supported by the National Key R&D Program of China (Nos. 2016YFB0401801, 2016YFB0400803), the National Natural Science Foundation of China (Nos. 61674138, 61674139, 61604145, 61574135, 61574134, 61474142, 61474110, 61377020, 61376089), the Science Challenge Project (No. JCKY2016212A503), and the One Hundred Person Project of the Chinese Academy of Sciences

      the National Natural Science Foundation of China 61674139

      the One Hundred Person Project of the Chinese Academy of Sciences 

      the National Natural Science Foundation of China 61604145

      the National Natural Science Foundation of China 61474110

      the Science Challenge Project JCKY2016212A503

      the National Natural Science Foundation of China 61674138

      the National Key R&D Program of China 2016YFB0400803

      the National Key R&D Program of China 2016YFB0401801

      the National Natural Science Foundation of China 61377020

      the National Natural Science Foundation of China 61474142

      the National Natural Science Foundation of China 61574134

      the National Natural Science Foundation of China 61574135

      the National Natural Science Foundation of China 61376089

      More Information
      • Corresponding author: Degang Zhao, Email: dgzhao@red.semi.ac.cn
      • Received Date: 2017-03-29
      • Published Date: 2017-05-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return