SEMICONDUCTOR MATERIALS

Electrodeposition and characterization of ZnO thin films using sodium thiosulfate as an additive for photovoltaic solar cells

Hassiba Rahal1, 2, Rafiaa Kihal1, 3, Abed Mohamed Affoune1, , Mokhtar Ghers4 and Faycal Djazi5

+ Author Affiliations

 Corresponding author: Abed Mohamed Affoune Email: affoune2@yahoo.fr

PDF

Abstract: Zinc oxide thin films have been grown by electrodeposition technique onto Cu and ITO-coated glass substrates from an aqueous zinc nitrate solution with addition of sodium thiosulfate at 90℃.The effects of sodium thiosulfate on the electrochemical deposition of ZnO were investigated by cyclic voltammetry and chronoamperometry techniques.Deposited films were obtained at-0:60 V vs.SCE and characterized by XRD, SEM, FTIR, optical, photoelectrochemical and electrical measurements.Thickness of the deposited film was measured to be 357 nm.X-ray diffraction results indicated that the synthesized ZnO has a pure hexagonal wurtzite structure with a marked preferential orientation along (002) plane.FTIR results confirmed the presence of ZnO films at peak 558 cm-1.SEM images showed uniform, compact morphology without any cracks and films composed of large flower-like ZnO agglomerates with star-shape.Optical properties of ZnO reveal a high optical transmission (>80%) and high absorption coefficient (α>105 cm-1) in visible region.The optical energy band gap was found to be 3.28 eV.Photoelectrochemical measurements indicated that the ZnO films had n-type semiconductor conduction.Electrical properties of ZnO films showed a low electrical resistivity of 6.54 Ω·cm, carrier concentration of-1.3×1017cm-3 and mobility of 7.35 cm2V-1s-1.

Key words: electrodepositionzinc oxidethin filmssemiconductorcyclic voltammetryHall effect measurements



[1]
Pawar B S, Pawar S M, Shin S W, et al. Effect of complexing agent on the properties of electrochemically deposited Cu2ZnSnS4(CZTS) thin films. Appl Surf Sci, 2010, 257: 1786 doi: 10.1016/j.apsusc.2010.09.016
[2]
Arico A S, Silvestro D, Antonucci P L, et al. Electrodeposited thin film ZnTe semiconductors for photovoltaic applications. Adv Perform Mater, 1997, 4: 115 doi: 10.1023/A:1008632602023
[3]
Sahal M, Hartiti B, Ridah A, et al. Structural, electrical and optical properties of ZnO thin films deposited by sol-gel method. Microelectron J, 2008, 39: 1425 doi: 10.1016/j.mejo.2008.06.085
[4]
Okazaki K, Kubo K, Shimogaki T, et al. Lasing characteristics of ZnO nanosheet excited by ultraviolet laser beam. Adv Mater Lett, 2011, 2(5): 354 doi: 10.5185/amlett
[5]
Singh S, Chakrabarti P. Comparison of the structural and optical properties of ZnO thin films deposited by three different methods for optoelectronic applications. Superlattices Microstruct, 2013, 64: 283 doi: 10.1016/j.spmi.2013.09.031
[6]
Li Y Y, Li Y X, Wu Y L, et al. Preparation and photoluminescent properties of zinc oxide phosphor. J Lumin, 2007, 126: 177 doi: 10.1016/j.jlumin.2006.06.012
[7]
Wang X, Ding Y, Li Z, et al. Single-crystal mesoporous ZnO thin films composed of nanowalls. Phys Chem, 2009, 113(5): 1791 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.332.8214
[8]
Dunkel C, Graberg T, Smarsly B M, et al. Limits of ZnO electrodeposition in mesoporous tin doped indium oxide films in view of application in dye-sensitized solar cells. Mater, 2014, 7: 3291 doi: 10.3390/ma7043291
[9]
Shimogaki T, Takahashi M, Yamasaki M, et al. Catalyst-free growth of ZnO nanowires on various-oriented sapphire substrates by pulsed-laser deposition. J Semicond, 2016, 37(2): 1 http://www.cnki.com.cn/Article/CJFDTOTAL-BDTX201602005.htm
[10]
Khan Z R, Khan M S, Zulfequar M, et al. Optical and structural properties of ZnO thin films fabricated by sol-gel method. Mater Sci Appl, 2011, 2: 340 http://www.scirp.org/journal/papercitationdetails.aspx?PaperID=4774&JournalID=174
[11]
Azuma M, Ichimura M. Fabrication of ZnO thin films by the photochemical deposition method. Mate Res Bull, 2008, 43: 3537 doi: 10.1016/j.materresbull.2008.01.014
[12]
Sharma S K, Rammohan A, Sharma A. Templated one step electrodeposition of high aspect ratio n-type ZnO nanowire arrays. J Colloid Interface Sci, 2010, 344: 1 doi: 10.1016/j.jcis.2009.12.026
[13]
Kou H, Zhang X, Du Y, et al. Electrochemical synthesis of ZnO nanoflowers and nanosheets on porous Si as photoelectric materials. Appl Surf Sci, 2011, 257: 4643 doi: 10.1016/j.apsusc.2010.12.108
[14]
Qin X J, Shao G J, Lin Z. The effect of surfactant on the structure and properties of ZnO films prepared by electrodeposition. Mater Sci Eng, B, 2012, 177: 1678 doi: 10.1016/j.mseb.2012.08.012
[15]
Yıldırımand A K, Altıokka B. Effect of potential on structural, morphological and optical properties of ZnO thin films obtained by electrodeposition. Mater Sci Eng B, 2015, 120: 107 http://davidpublisher.org/Public/uploads/Contribute/55af5454a5933.pdf
[16]
Wijesundera R P, Hidaka M, Koga K, et al. Growth and characterisation of potentiostatically electrodeposited Cu2O and Cu thin films. Thin Solid Films, 2006, 500: 241 doi: 10.1016/j.tsf.2005.11.023
[17]
Yoshida T, Komatsu D, Shimokawa N, et al. Mechanism of cathodic electrodeposition of zinc oxide thin films from aqueous zinc nitrate baths. Thin Solid Films, 2004, 451: 166 https://www.researchgate.net/publication/222841633_Mechanism_of_cathodic_electrodeposition_of_zinc_oxide_thin_films_from_aqueous_zinc_nitrate_baths
[18]
Wellings J S, Chaure N B, Heavens S N, et al. Growth and characterization of electrodeposited ZnO thin films. Thin Solid Films, 2008, 516: 3893 doi: 10.1016/j.tsf.2007.07.156
[19]
Enculescu I, Matei E, Sima M, et al. Influence of polyvinylpyrolidone as an additive in electrochemical preparation of ZnO nanowires and nanostructured thin films. Surf and Interface Anal, 2008, 40: 556 doi: 10.1002/(ISSN)1096-9918
[20]
Whang T, Hsieh M, Tsai J. Lactic acid aided electrochemical deposition of c-axis preferred orientation of zinc oxide thin films: Structural and morphological features. Appl Surf Sci, 2011, 257: 9539 doi: 10.1016/j.apsusc.2011.06.058
[21]
Fathy N, Ichimura M. Electrochemical deposition of ZnO thin films from acidic solutions. J Cryst Growth, 2006, 294: 191 doi: 10.1016/j.jcrysgro.2006.07.008
[22]
Pauporte Th, Lincot D. Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition Ⅱ-mechanistic aspects. J Electroanal Chem, 2001, 517: 54 doi: 10.1016/S0022-0728(01)00674-X
[23]
Li G, Dawa C, Bu Q, et al. Electrochemical self-assembly of ZnO nanoporous structures. J Phys Chem C, 2007, 111: 1919 doi: 10.1021/jp066447x
[24]
Li G, Dawa C, Bu Q, et al. Electrochemical synthesis of orientation-ordered ZnO nanorod bundles. Electrochem Commun, 2007, 9: 863 doi: 10.1016/j.elecom.2006.11.029
[25]
Inamdar A I, Sonavane A C, Sharma S K, et al. Nanocrystalline zinc oxide thin films by novel double pulse single step electro-deposition. J Alloys Compd, 2010, 495: 76 doi: 10.1016/j.jallcom.2010.01.090
[26]
Inamdar A I, Mujawar S H, Patil P S. The influences of complexing agents on growth of zinc oxide thin films from zinc acetate bath and associated kinetic parameters. Int J Electrochem Sci, 2007, 2: 797 https://www.researchgate.net/profile/P_Patil/publication/26500104_The_Influences_of_Complexing_agents_on_Growth_of_Zinc_Oxide_Thin_Films_from_Zinc_Acetate_Bath_and_Associated_Kinetic_Parameters/links/02bfe50d017f91d328000000.pdf?origin=publication_detail
[27]
Wei S, Lian J, Chen X. Effects of seed layer on the structure and property of zinc oxide thin films electrochemically deposited on ITO-coated glass. Appl Surf Sci, 2008, 254: 6605 doi: 10.1016/j.apsusc.2008.04.039
[28]
Zhang L, Chen Z, Tang Y. Low temperature cathodic electrodeposition of nanocrystalline zinc oxide thin films. Thin Solid Films, 2005, 492: 24 doi: 10.1016/j.tsf.2005.06.028
[29]
El Hichou A, Stein N, Boulanger C. Structural and spectroscopic ellipsometry characterization for electrodeposited ZnO growth at different hydrogen peroxide concentration. Thin Solid Films, 2010, 518: 4150 doi: 10.1016/j.tsf.2009.11.070
[30]
Laurent K, Wang B Q, Yu D P, et al. Structural and optical properties of electrodeposited ZnO thin films. Thin Solid Films, 2008, 517: 617 doi: 10.1016/j.tsf.2008.07.013
[31]
Gao X, Peng F, Li X, et al. Growth of highly oriented ZnO films by the two-step electrodeposition technique. J Mater Sci, 2007, 42: 9638 doi: 10.1007/s10853-007-1970-6
[32]
Abdel Haleem A M, Ichimura M. Electrochemical deposition of aluminum oxide thin films from aqueous baths. Mater Lett, 2014, 130: 26 doi: 10.1016/j.matlet.2014.05.061
[33]
Chatman Sh, Ryan B J, Poduska K M. Selective formation of Ohmic junctions and Schottky barriers with electrodeposited ZnO. Appl Phys Lett, 2008, 92: 1 http://core.ac.uk/display/19524501
[34]
Ibrahim M A M, Al Radadi R M. Role of Glycine as a complexing agent in nickel electrodeposition from acidic sulphate bath. Int J Electrochem Sci, 2015, 10: 4946 https://www.researchgate.net/publication/282159156_Role_of_Glycine_as_a_Complexing_Agent_in_Nickel_Electrodeposition_from_Acidic_Sulphate_Bath
[35]
Sulciute A, Valatka E. Electrodeposition photoelectrocatalytic activity of ZnO films on AISI 304 type steel. Mater Sci, 2012, 18(4): 318 http://www.oalib.com/paper/2315788
[36]
Ali M M. Characterization of ZnO thin films grown by chemical bath deposition. J Basra Res Sci, 2011, 37(3): 49 https://www.researchgate.net/publication/268201364_Characterization_of_ZnO_thin_films_grown_by_chemical_bath_deposition
[37]
Thool G Sh, Singh A K, Singh R S, et al. Facile synthesis of flat crystal ZnO thin films by solution growth method: a microstructural investigation. J Saudi Chem Soc, 2014, 18: 712 doi: 10.1016/j.jscs.2014.02.005
[38]
Ismail A, Abdullah M J. The structural and optical properties of ZnO thin films prepared at different RF sputtering power. J King Saud Univ Sci, 2013, 25: 209 doi: 10.1016/j.jksus.2012.12.004
[39]
Klink M J, Crouch A M. Preparation of low temperature nanostructured ZnO and RhO2 on titanium substrates, and evaluation for phenol electro-catalytic oxidation. Microchim Acta, 2009, 166: 27 doi: 10.1007/s00604-009-0157-z
[40]
Pathak T K, Kumar R, Purohit L P. Preparation and optical properties of undoped and nitrogen doped ZnO thin films by RF sputtering. Int J Chem Tech Res, 2015, 7(2): 987 https://www.researchgate.net/publication/281401796_Preparation_and_Optical_properties_of_undoped_and_Nitrogen_doped_ZnO_thin_films_by_RF_sputtering
[41]
Baviskar P K, Tan W, Zhang J, et al. Wet chemical synthesis of ZnO thin films and sensitization to light with N3 dye for solar cell application. J Phys D: Appl Phys, 2009, 42: 1
[42]
Foo K L, Kashif M, Hashim U, et al. Effect of different solvents on the structural and optical properties of zinc oxide thin films for optoelectronic applications. Ceram Int, 2014, 40: 753 doi: 10.1016/j.ceramint.2013.06.065
[43]
Chettah H, Abdi D. Effect of the electrochemical technique on nanocrysatlline ZnO electrodeposition, its structural, morphological and photoelectrochemical properties. Thin Solid Films, 2013, 537: 119 doi: 10.1016/j.tsf.2013.04.024
[44]
Chen L, Hsieh C, Zhang X. Electrical properties of CZO films prepared by ultrasonic spray pyrolysis. Mater, 2014, 7: 7304 doi: 10.3390/ma7117304
Fig. 1.  Color online) Cyclic voltammograms of the solution containing 0.1 M Zn (NO$_{\mathrm{3}})_{\mathrm{2}}$$\cdot$6H$_{\mathrm{2}}$O at pH = 5.74 and $T = 90$ ℃, (a) without and (b) with 1.2 mM sodium thiosulfate. The potential scanning rate was 50 mV/s.

Fig. 2.  Chronoamperometry curve for the deposition of ZnO thin films.

Fig. 3.  XRD patterns of ZnO thin films deposited (a) without and (b) with sodium thiosulfate.

Fig. 4.  FTIR spectrum of ZnO thin films.

Fig. 5.  Color online) SEM images of ZnO films deposited onto ITO-coated glass substrates. Without sodium thiosulfate: (a) low-resolution image, (b) high-resolution image. With sodium thiosulfate: (c) low-resolution image, (d) high-resolution image.

Fig. 6.  Transmittance spectrum of ZnO thin films.

Fig. 7.  Plot of ($\alpha h\nu )^{\mathrm{2}}$ versus $h\nu $ of ZnO thin films.

Fig. 8.  Photoelectrochemical response of ZnO thin films in the dark and under illumination.

Table 1.   Electrochemical parameters obtained from cyclic voltammograms.

Table 2.   Comparison of the observed $d$ values of ZnO films with JCPDS data (36-1451).

Table 3.   Structural parameters of ZnO thin films.

[1]
Pawar B S, Pawar S M, Shin S W, et al. Effect of complexing agent on the properties of electrochemically deposited Cu2ZnSnS4(CZTS) thin films. Appl Surf Sci, 2010, 257: 1786 doi: 10.1016/j.apsusc.2010.09.016
[2]
Arico A S, Silvestro D, Antonucci P L, et al. Electrodeposited thin film ZnTe semiconductors for photovoltaic applications. Adv Perform Mater, 1997, 4: 115 doi: 10.1023/A:1008632602023
[3]
Sahal M, Hartiti B, Ridah A, et al. Structural, electrical and optical properties of ZnO thin films deposited by sol-gel method. Microelectron J, 2008, 39: 1425 doi: 10.1016/j.mejo.2008.06.085
[4]
Okazaki K, Kubo K, Shimogaki T, et al. Lasing characteristics of ZnO nanosheet excited by ultraviolet laser beam. Adv Mater Lett, 2011, 2(5): 354 doi: 10.5185/amlett
[5]
Singh S, Chakrabarti P. Comparison of the structural and optical properties of ZnO thin films deposited by three different methods for optoelectronic applications. Superlattices Microstruct, 2013, 64: 283 doi: 10.1016/j.spmi.2013.09.031
[6]
Li Y Y, Li Y X, Wu Y L, et al. Preparation and photoluminescent properties of zinc oxide phosphor. J Lumin, 2007, 126: 177 doi: 10.1016/j.jlumin.2006.06.012
[7]
Wang X, Ding Y, Li Z, et al. Single-crystal mesoporous ZnO thin films composed of nanowalls. Phys Chem, 2009, 113(5): 1791 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.332.8214
[8]
Dunkel C, Graberg T, Smarsly B M, et al. Limits of ZnO electrodeposition in mesoporous tin doped indium oxide films in view of application in dye-sensitized solar cells. Mater, 2014, 7: 3291 doi: 10.3390/ma7043291
[9]
Shimogaki T, Takahashi M, Yamasaki M, et al. Catalyst-free growth of ZnO nanowires on various-oriented sapphire substrates by pulsed-laser deposition. J Semicond, 2016, 37(2): 1 http://www.cnki.com.cn/Article/CJFDTOTAL-BDTX201602005.htm
[10]
Khan Z R, Khan M S, Zulfequar M, et al. Optical and structural properties of ZnO thin films fabricated by sol-gel method. Mater Sci Appl, 2011, 2: 340 http://www.scirp.org/journal/papercitationdetails.aspx?PaperID=4774&JournalID=174
[11]
Azuma M, Ichimura M. Fabrication of ZnO thin films by the photochemical deposition method. Mate Res Bull, 2008, 43: 3537 doi: 10.1016/j.materresbull.2008.01.014
[12]
Sharma S K, Rammohan A, Sharma A. Templated one step electrodeposition of high aspect ratio n-type ZnO nanowire arrays. J Colloid Interface Sci, 2010, 344: 1 doi: 10.1016/j.jcis.2009.12.026
[13]
Kou H, Zhang X, Du Y, et al. Electrochemical synthesis of ZnO nanoflowers and nanosheets on porous Si as photoelectric materials. Appl Surf Sci, 2011, 257: 4643 doi: 10.1016/j.apsusc.2010.12.108
[14]
Qin X J, Shao G J, Lin Z. The effect of surfactant on the structure and properties of ZnO films prepared by electrodeposition. Mater Sci Eng, B, 2012, 177: 1678 doi: 10.1016/j.mseb.2012.08.012
[15]
Yıldırımand A K, Altıokka B. Effect of potential on structural, morphological and optical properties of ZnO thin films obtained by electrodeposition. Mater Sci Eng B, 2015, 120: 107 http://davidpublisher.org/Public/uploads/Contribute/55af5454a5933.pdf
[16]
Wijesundera R P, Hidaka M, Koga K, et al. Growth and characterisation of potentiostatically electrodeposited Cu2O and Cu thin films. Thin Solid Films, 2006, 500: 241 doi: 10.1016/j.tsf.2005.11.023
[17]
Yoshida T, Komatsu D, Shimokawa N, et al. Mechanism of cathodic electrodeposition of zinc oxide thin films from aqueous zinc nitrate baths. Thin Solid Films, 2004, 451: 166 https://www.researchgate.net/publication/222841633_Mechanism_of_cathodic_electrodeposition_of_zinc_oxide_thin_films_from_aqueous_zinc_nitrate_baths
[18]
Wellings J S, Chaure N B, Heavens S N, et al. Growth and characterization of electrodeposited ZnO thin films. Thin Solid Films, 2008, 516: 3893 doi: 10.1016/j.tsf.2007.07.156
[19]
Enculescu I, Matei E, Sima M, et al. Influence of polyvinylpyrolidone as an additive in electrochemical preparation of ZnO nanowires and nanostructured thin films. Surf and Interface Anal, 2008, 40: 556 doi: 10.1002/(ISSN)1096-9918
[20]
Whang T, Hsieh M, Tsai J. Lactic acid aided electrochemical deposition of c-axis preferred orientation of zinc oxide thin films: Structural and morphological features. Appl Surf Sci, 2011, 257: 9539 doi: 10.1016/j.apsusc.2011.06.058
[21]
Fathy N, Ichimura M. Electrochemical deposition of ZnO thin films from acidic solutions. J Cryst Growth, 2006, 294: 191 doi: 10.1016/j.jcrysgro.2006.07.008
[22]
Pauporte Th, Lincot D. Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition Ⅱ-mechanistic aspects. J Electroanal Chem, 2001, 517: 54 doi: 10.1016/S0022-0728(01)00674-X
[23]
Li G, Dawa C, Bu Q, et al. Electrochemical self-assembly of ZnO nanoporous structures. J Phys Chem C, 2007, 111: 1919 doi: 10.1021/jp066447x
[24]
Li G, Dawa C, Bu Q, et al. Electrochemical synthesis of orientation-ordered ZnO nanorod bundles. Electrochem Commun, 2007, 9: 863 doi: 10.1016/j.elecom.2006.11.029
[25]
Inamdar A I, Sonavane A C, Sharma S K, et al. Nanocrystalline zinc oxide thin films by novel double pulse single step electro-deposition. J Alloys Compd, 2010, 495: 76 doi: 10.1016/j.jallcom.2010.01.090
[26]
Inamdar A I, Mujawar S H, Patil P S. The influences of complexing agents on growth of zinc oxide thin films from zinc acetate bath and associated kinetic parameters. Int J Electrochem Sci, 2007, 2: 797 https://www.researchgate.net/profile/P_Patil/publication/26500104_The_Influences_of_Complexing_agents_on_Growth_of_Zinc_Oxide_Thin_Films_from_Zinc_Acetate_Bath_and_Associated_Kinetic_Parameters/links/02bfe50d017f91d328000000.pdf?origin=publication_detail
[27]
Wei S, Lian J, Chen X. Effects of seed layer on the structure and property of zinc oxide thin films electrochemically deposited on ITO-coated glass. Appl Surf Sci, 2008, 254: 6605 doi: 10.1016/j.apsusc.2008.04.039
[28]
Zhang L, Chen Z, Tang Y. Low temperature cathodic electrodeposition of nanocrystalline zinc oxide thin films. Thin Solid Films, 2005, 492: 24 doi: 10.1016/j.tsf.2005.06.028
[29]
El Hichou A, Stein N, Boulanger C. Structural and spectroscopic ellipsometry characterization for electrodeposited ZnO growth at different hydrogen peroxide concentration. Thin Solid Films, 2010, 518: 4150 doi: 10.1016/j.tsf.2009.11.070
[30]
Laurent K, Wang B Q, Yu D P, et al. Structural and optical properties of electrodeposited ZnO thin films. Thin Solid Films, 2008, 517: 617 doi: 10.1016/j.tsf.2008.07.013
[31]
Gao X, Peng F, Li X, et al. Growth of highly oriented ZnO films by the two-step electrodeposition technique. J Mater Sci, 2007, 42: 9638 doi: 10.1007/s10853-007-1970-6
[32]
Abdel Haleem A M, Ichimura M. Electrochemical deposition of aluminum oxide thin films from aqueous baths. Mater Lett, 2014, 130: 26 doi: 10.1016/j.matlet.2014.05.061
[33]
Chatman Sh, Ryan B J, Poduska K M. Selective formation of Ohmic junctions and Schottky barriers with electrodeposited ZnO. Appl Phys Lett, 2008, 92: 1 http://core.ac.uk/display/19524501
[34]
Ibrahim M A M, Al Radadi R M. Role of Glycine as a complexing agent in nickel electrodeposition from acidic sulphate bath. Int J Electrochem Sci, 2015, 10: 4946 https://www.researchgate.net/publication/282159156_Role_of_Glycine_as_a_Complexing_Agent_in_Nickel_Electrodeposition_from_Acidic_Sulphate_Bath
[35]
Sulciute A, Valatka E. Electrodeposition photoelectrocatalytic activity of ZnO films on AISI 304 type steel. Mater Sci, 2012, 18(4): 318 http://www.oalib.com/paper/2315788
[36]
Ali M M. Characterization of ZnO thin films grown by chemical bath deposition. J Basra Res Sci, 2011, 37(3): 49 https://www.researchgate.net/publication/268201364_Characterization_of_ZnO_thin_films_grown_by_chemical_bath_deposition
[37]
Thool G Sh, Singh A K, Singh R S, et al. Facile synthesis of flat crystal ZnO thin films by solution growth method: a microstructural investigation. J Saudi Chem Soc, 2014, 18: 712 doi: 10.1016/j.jscs.2014.02.005
[38]
Ismail A, Abdullah M J. The structural and optical properties of ZnO thin films prepared at different RF sputtering power. J King Saud Univ Sci, 2013, 25: 209 doi: 10.1016/j.jksus.2012.12.004
[39]
Klink M J, Crouch A M. Preparation of low temperature nanostructured ZnO and RhO2 on titanium substrates, and evaluation for phenol electro-catalytic oxidation. Microchim Acta, 2009, 166: 27 doi: 10.1007/s00604-009-0157-z
[40]
Pathak T K, Kumar R, Purohit L P. Preparation and optical properties of undoped and nitrogen doped ZnO thin films by RF sputtering. Int J Chem Tech Res, 2015, 7(2): 987 https://www.researchgate.net/publication/281401796_Preparation_and_Optical_properties_of_undoped_and_Nitrogen_doped_ZnO_thin_films_by_RF_sputtering
[41]
Baviskar P K, Tan W, Zhang J, et al. Wet chemical synthesis of ZnO thin films and sensitization to light with N3 dye for solar cell application. J Phys D: Appl Phys, 2009, 42: 1
[42]
Foo K L, Kashif M, Hashim U, et al. Effect of different solvents on the structural and optical properties of zinc oxide thin films for optoelectronic applications. Ceram Int, 2014, 40: 753 doi: 10.1016/j.ceramint.2013.06.065
[43]
Chettah H, Abdi D. Effect of the electrochemical technique on nanocrysatlline ZnO electrodeposition, its structural, morphological and photoelectrochemical properties. Thin Solid Films, 2013, 537: 119 doi: 10.1016/j.tsf.2013.04.024
[44]
Chen L, Hsieh C, Zhang X. Electrical properties of CZO films prepared by ultrasonic spray pyrolysis. Mater, 2014, 7: 7304 doi: 10.3390/ma7117304
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3772 Times PDF downloads: 68 Times Cited by: 0 Times

    History

    Received: 12 October 2016 Revised: 15 December 2016 Online: Published: 01 May 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hassiba Rahal, Rafiaa Kihal, Abed Mohamed Affoune, Mokhtar Ghers, Faycal Djazi. Electrodeposition and characterization of ZnO thin films using sodium thiosulfate as an additive for photovoltaic solar cells[J]. Journal of Semiconductors, 2017, 38(5): 053002. doi: 10.1088/1674-4926/38/5/053002 H Rahal, R Kihal, A M Affoune, M Ghers, F Djazi. Electrodeposition and characterization of ZnO thin films using sodium thiosulfate as an additive for photovoltaic solar cells[J]. J. Semicond., 2017, 38(5): 053002. doi: 10.1088/1674-4926/38/5/053002.Export: BibTex EndNote
      Citation:
      Hassiba Rahal, Rafiaa Kihal, Abed Mohamed Affoune, Mokhtar Ghers, Faycal Djazi. Electrodeposition and characterization of ZnO thin films using sodium thiosulfate as an additive for photovoltaic solar cells[J]. Journal of Semiconductors, 2017, 38(5): 053002. doi: 10.1088/1674-4926/38/5/053002

      H Rahal, R Kihal, A M Affoune, M Ghers, F Djazi. Electrodeposition and characterization of ZnO thin films using sodium thiosulfate as an additive for photovoltaic solar cells[J]. J. Semicond., 2017, 38(5): 053002. doi: 10.1088/1674-4926/38/5/053002.
      Export: BibTex EndNote

      Electrodeposition and characterization of ZnO thin films using sodium thiosulfate as an additive for photovoltaic solar cells

      doi: 10.1088/1674-4926/38/5/053002
      Funds:

      Project supported by the Algerian Ministry of Higher Education and Scientific Research, Algeria (No. J0101520090018)

      the Algerian Ministry of Higher Education and Scientific Research, Algeria J0101520090018

      More Information
      • Corresponding author: Abed Mohamed Affoune Email: affoune2@yahoo.fr
      • Received Date: 2016-10-12
      • Revised Date: 2016-12-15
      • Published Date: 2017-05-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return