SEMICONDUCTOR DEVICES

Fabrication of a novel MOS diode by indium incorporation control for microelectronic applications

M. Benhaliliba1, , C.E. Benouis1, M.S. Aida2 and A. Ayeshamariam3

+ Author Affiliations

 Corresponding author: M. Benhaliliba Email:mbenhaliliba@gmail.com

PDF

Abstract: Control of the electronic parameters on a novel metal-oxide-semiconductor (MOS) diode by indium doping incorporation is emphasized and investigated. The electronic parameters, such as ideality factor, barrier height (BH), series resistance, and charge carrier density are extracted from the current-voltage (I-V) and the capacitance-voltage (C-V) characteristics. The properties of the MOS diode based on 4%, 6% and 8% indium doped tin oxide are largely studied. The Ag/SnO2/nSi/Au MOS diode is fabricated by spray pyrolysis route, at 300℃ from the In-doped SnO2 layer. This was grown onto n-type silicon and metallic (Au) contacts which were made by thermal evaporation under a vacuum@10-5 Torr and having a thickness of 120 nm and a diameter of 1 mm. Determined by the Cheung-Cheung approximation method, the series resistance increases (334-534 Ω)with the In doping level while the barrier height (BH) remains constant around 0.57 V. The Norde calculation technique gives a similar BH value of 0.69 V but the series resistance reaches higher values of 5500 Ω. The indium doping level influences on the characteristics of Ag/SnO2:In/Si/Au MOS diode while the 4% indium level causes the capacitance inversion and the device turns into p-type material.

Key words: indium incorporationMOS diodecurrent-voltage measurementscapacitance-voltage characteristicsmicroelectronic parameters



[1]
Gupta R K, Yakuphanoglu F. Analysis of device parameters of Al/In2O3/p-Si MOS diode. Microelectron Eng, 2013, 105:13 doi: 10.1016/j.mee.2012.12.026
[2]
Karatas D, Yakuphanoglu F. Effects of illumination on electrical parameters of Ag/n-CdO/p-Si diode. Mater Chem Phys, 2013, 138:72 doi: 10.1016/j.matchemphys.2012.10.038
[3]
Mayes E L H, Partridge J G, Field M R, et al. The interface structure of high performance ZnO MOS diodes. Physica B, 2012, 407:2867 doi: 10.1016/j.physb.2011.08.032
[4]
Karadeniz S, Tugluoglu N, Serin T. Substrate temperature dependence of series resistance in Al/SnO2/p-Si (111) MOS diodes prepared by spray deposition method. Appl Surf Sci, 2004, 233:5 doi: 10.1016/j.apsusc.2004.03.216
[5]
Xiu X, Pang Z, Lv M, et al. Transparent conducting molybdenum-doped zinc oxide films deposited by RF magnetron sputtering. Appl Surf Sci, 2007, 253:3345 doi: 10.1016/j.apsusc.2006.07.024
[6]
Subrahmanyam A, Barik U K. Synthesis of p-type transparent conducting silver:indium oxide (AIO) thin films by reactive electron beam evaporation technique. J Phys Chem Solids, 2005, 66:817 doi: 10.1016/j.jpcs.2004.10.007
[7]
Meng Y, Yang X, Chen H, et al. A new transparent conductive thin film In2O3:Mo. Thin Solid Films, 2001, 394:218 doi: 10.1016/S0040-6090(01)01142-7
[8]
Sun S, Huang J, Li D. Effects of H2 in indium-molybdenum oxide films during high density plasma evaporation at room temperature. Thin Solid Films, 2004, 469/470:6 doi: 10.1016/j.tsf.2004.06.183
[9]
Gordillo G, Moreno L C, de la Cruz W, et al. Preparation and characterization of SnO2 thin films deposited by spray pyrolysis from SnCl2 and SnCl4 precursors. Thin Solid Films, 1994, 252:61 doi: 10.1016/0040-6090(94)90826-5
[10]
Hu J, Gordon R G. Textured aluminum doped zinc oxide thin films from atmospheric pressure chemical vapor deposition. J Appl Phys, 1992, 71:880 doi: 10.1063/1.351309
[11]
Gupta R K, Ghosh K, Patel R, et al. Effect of thickness on optoelectrical properties of Mo-doped indium oxide films. Appl Surf Sci, 2008, 255:3046 doi: 10.1016/j.apsusc.2008.08.077
[12]
Benhaliliba M Benouis C E, Yakuphanoglu F, et al. Detailed investigation of submicrometer-sized grains of chemically sprayed (Sn1-xAlx, O2)(0≤x≤0.085) thin films. J Alloys Compd, 2012, 527:40 doi: 10.1016/j.jallcom.2012.02.128
[13]
Kykyneshi R, Zeng J, Cann D P. Transparent conducting oxides based on tin oxide. Chapter 6. In: Ginley D S, et al. ed. Handbook of transparent conductors. Springer, 2010
[14]
Huang F Q, Yang C Y, Wan D Y. Advanced solar materials for thin-film photovoltaic cells. Front Phys, 2011, 6(2):177 doi: 10.1007/s11467-011-0173-4
[15]
Karadeniz S, Tugluoglu N, Serin T, et al. The energy distribution of the interface state density of SnO2/p-Si (111) heterojunctions prepared at different substrate temperatures by spray deposition method. Appl Surf Sci, 2005, 246:30 doi: 10.1016/j.apsusc.2004.11.022
[16]
Benouis C E, Benhaliliba M, Yakuphanoglu F, et al. Physical properties of ultrasonic sprayed nanosized indium doped SnO2 films. Synthetic Metals, 2011, 161:1509 doi: 10.1016/j.synthmet.2011.04.017
[17]
Rhoderick E H, Williams R H. Metal-semiconductor contacts. Oxford:Clarendon, 1988
[18]
Carrasquillo K V, Pinto N J. Tunable MOS diodes fabricated from crossed electrospun SnO2/PEDOT-PSSA nanoribbons. Mater Sci Eng B, 2012, 177:805 doi: 10.1016/j.mseb.2012.03.032
[19]
Ozer M, Y°ld°z D E, Alt°ndal S, et al. Temperature dependence of characteristic parameters of the Au/SnO2/n-Si (MIS) MOS diodes. Solid-State Electron, 2007, 51:941 doi: 10.1016/j.sse.2007.04.013
[20]
Sze S M. Physics of semiconductor devices. 2nd ed. New York:John Wiley & Sons, 1981
[21]
Bar°ş B. Analysis of device parameters for Au/tin oxide/nSi(100) metal-oxide-semiconductor (MOS) diodes. Physica B, 2014, 438:65 doi: 10.1016/j.physb.2014.01.009
[22]
Cheung S K, Cheung N W. Extraction of MOS diode parameters from forward current-voltage characteristics. Appl Phys Lett, 1986, 49:85 doi: 10.1063/1.97359
[23]
Lee H Y, Wu B K, Chern M Y. Temperature dependence and the effect of hydrogen peroxide on ITO/poly-ZnO MOS diodes fabricated by laser evaporation. Curr Appl Phys, 2013, 13:1325 doi: 10.1016/j.cap.2013.04.007
[24]
Norde H. A modified forward I -V plot for MOS diodes with high series resistance. J Appl Phys, 1979, 50:5052 doi: 10.1063/1.325607
[25]
Farag A A M, Farooq W A, Yakuphanoglu F. Characterization and performance of MOS diode based on wide band gap semiconductor ZnO using a low-cost and simplified sol-gel spin coating technique. Microelectron Eng, 2011, 88:2894 doi: 10.1016/j.mee.2011.03.016
[26]
Altindal S, Kanbur H, Yildiz D E, et al. Current conduction mechanism in Al/p-Si MOS barrier diodes with native insulator layer at low temperatures. Appl Surf Sci, 2007, 253:5056 doi: 10.1016/j.apsusc.2006.11.015
[27]
Aydogan S, Incekara U, Deniz A R, et al. Extraction of electronic parameters of MOS diode based on an organic indigotindisulfonate sodium (IS). Solid State Commun, 2010, 150:1592 doi: 10.1016/j.ssc.2010.05.043
[28]
Aissa Z, Bouzidi A, Amlouk M. Study of the I -V characteristics of SnO2:F/AgInS2(p)/Al MOS diodes. J Alloys Compd, 2010, 506:492 doi: 10.1016/j.jallcom.2010.07.053
[29]
Ruan C H, Lin Y J, Che Y H, et al. Rectifying performance of p-type tin(Ⅱ) sulfide contacts on n-type silicon:effect of silicon nanowire sulfidation on electronic transport of heterojunction diodes. Mater Sci Semicond Process, 2015, 32:62 doi: 10.1016/j.mssp.2015.01.005
[30]
Yakuphanoglu F. Electrical characterization and device characterization of ZnO microring shaped films by sol-gel method. J Alloys Compd, 2010, 507:184 doi: 10.1016/j.jallcom.2010.07.151
[31]
Yakuphanoglu F, Caglar Y, Caglar M, et al. ZnO/p-Si heterojunction photodiode by sol-gel deposition of nanostructure n-ZnO film on p-Si substrate. Mater Sci Semicond Process, 2010, 13:137 doi: 10.1016/j.mssp.2010.05.005
[32]
Ruan C H, Lin Y J, Chen Y H, et al. Rectifying performance of p-type tin(Ⅱ) sulfide contacts on n-type silicon:effect of silicon nanowire sulfidation on electronic transport of heterojunction diodes. Mater Sci Semicond Process, 2015, 32:62 doi: 10.1016/j.mssp.2015.01.005
[33]
Farag A A M, Gunduz B, Yakuphanoglu F, et al. Controlling of electrical characteristics of Al/p-Si MOS diode by tris(8-hydroxyquinolinato) aluminum organic film. Synth Met, 2010, 160:2559 doi: 10.1016/j.synthmet.2010.10.005
[34]
Ho P S, Yang E S, Evans H L, et al. Electronic states at silicidesilicon interfaces. Phys Rev Lett, 1986, 56:177 doi: 10.1103/PhysRevLett.56.177
[35]
Chattopadhyay P, Raychaudhuri B. New technique for the determination of series resistance of MOS barrier diodes. Solid State Electron, 1992, 35:1023 doi: 10.1016/0038-1101(92)90337-C
[36]
Benhaliliba M. The barrier height and the series resistance of Ag/SnO2/Si/Au Schottky diode determined by Cheung and Lien methods. J New Technol Mater, 2015, 5:24 doi: 10.12816/0019429
[37]
Kim T W, Lee D U, Lee J H, et al. Structural, electrical, and optical properties of SnO2 nanocrystalline thin films grown on pInSb (111) substrates. J Appl Phys, 2001, 90:175 doi: 10.1063/1.1372159
[38]
Schroder D K. Semiconductor material and device characterization. John Wiley & Sons, 2016 http://www.productmanualguide.com/newpdf/semiconductor-device-and-materials-characterization.pdf
[39]
Ahaitouf A. Etude des effets des irradiations neutron sur des structures MOS, technologie N-MOS, par spectroscopie DLTS et mesures capacitives, Laboratoire lnterfaces Composants et M icroélectronique, Université de Metz, France, 1999
[40]
Ip K, Pearton S J, Norton D P, et al. Zinc oxide bulk, thin films and nanostructures. In: Jagadish C, Pearton S J, ed. Advances in processing of ZnO. 1st ed. Elsevier, 2006
Fig. 1.  (Color online) The configuration of the Ag/SnO2:In/Si/Au MOS structure and the measurement set up.

Fig. 2.  SEM image at a magnification of 10000 of the SnO2/Si/Au contact, the scale is 1 μm as shown in the bottom of the picture. The inset shows the surface morphology of the as-fabricated diode, where the SnO2 area is assigned by a yellow arrow while the metallic contact is shown by a red arrow.

Fig. 3.  (Color online) I-V semi log plots of Ag/SnO2: In/nSi/Au MOS diode for 4%, 6%, and 8% indium amounts in the dark and at room temperature conditions.

Fig. 4.  (Color online) The plotting of dV/d $\ln I$ versus current of Ag/SnO2:In/nSi/Au MOS diode for 4%, 6%, and 8% indium amounts. Linear fit is sketched in red solid line, fit equations are displayed.

Fig. 5.  (Color online) Sketch of $H(I)$ versus current of Ag/SnO2:In/nSi/Au MOS diode for 4%, 6%, and 8% indium amounts. Inset shows the linear fit (solid red line) and its equation.

Fig. 6.  (Color online) The variation of the Norde function $F(V)$ versus voltage $(V)$ of Ag/SnO2:In/nSi/Au MOS diode at various indium doping levels. Inset shows the minima $F (V_{0})$ for each In doping level.

Fig. 7.  (Color online) Barrier height versus minimum potential of Ag/SnO2/nSi/Au MOS diode at various In amounts. Linear fitting is plotted by a solid red line.

Fig. 8.  (Color online) Series resistance versus minimum potential of the Ag/SnO2/nSi/Au MOS diode at various In amounts. The inset displays the linear fitting and its equation.

Fig. 9.  (Color online) The photocurrent-time plotting of Ag/SnO2:In/nSi/Au MOS diode for various indium amounts 4%, 6%, and 8% under 200 W.

Fig. 10.  (Color online) The plot of the capacitance-voltage characteristics of Ag/SnO $_2$ /nSi/Au MOS diode for 4%, 6%, and 8% indium doping level measured in dark at frequency of 1 MHz. The accumulation (a), depletion (d), and deep depletion (dd) regimes are clearly described in C-V curve for the p-type material as shown by black arrow.

Fig. 11.  Typical $C^{\mathrm{-2}}$ -V sketch of the Ag/SnO2:In/Si/Au MOS diode for 4%, 6%, and 8 % indium doping levels measured in the dark. Linear fit is shown in the inset of the figure.

Table 1.   The extracted microelectronic parameters of Ag/SnO2:In/Si/Au MOS diode from I-V characteristics using Cheung and Norde methods and C-V characteristics at 1 MHz. Ideality factor, rectification ratio, integer parameter, saturation current, extracted parameters by both Cheung and Norde methods, Built in potential ( $\mathit{\Psi } = {V_{{\rm{bi}}}} - kT/q$ ) and charge carrier concentration.

Table 2.   The minimum potential $V_{\mathrm{0}}$ , its corresponding $F(V_0) $ and current $I_{\mathrm{min}}$ and series resistance of the fabricated Ag/SnO2:In/Si/Au MOS device for different In doping amounts determined by Norde approximation.

Table 3.   The conduction mechanism parameters (power law $I=kV^{m})$ of Ag/SnO $_2$ :In/Si/Au MOS diode at different In amounts. These data are obtained from the linear part of $\log I$ - $\log V$ curves.

[1]
Gupta R K, Yakuphanoglu F. Analysis of device parameters of Al/In2O3/p-Si MOS diode. Microelectron Eng, 2013, 105:13 doi: 10.1016/j.mee.2012.12.026
[2]
Karatas D, Yakuphanoglu F. Effects of illumination on electrical parameters of Ag/n-CdO/p-Si diode. Mater Chem Phys, 2013, 138:72 doi: 10.1016/j.matchemphys.2012.10.038
[3]
Mayes E L H, Partridge J G, Field M R, et al. The interface structure of high performance ZnO MOS diodes. Physica B, 2012, 407:2867 doi: 10.1016/j.physb.2011.08.032
[4]
Karadeniz S, Tugluoglu N, Serin T. Substrate temperature dependence of series resistance in Al/SnO2/p-Si (111) MOS diodes prepared by spray deposition method. Appl Surf Sci, 2004, 233:5 doi: 10.1016/j.apsusc.2004.03.216
[5]
Xiu X, Pang Z, Lv M, et al. Transparent conducting molybdenum-doped zinc oxide films deposited by RF magnetron sputtering. Appl Surf Sci, 2007, 253:3345 doi: 10.1016/j.apsusc.2006.07.024
[6]
Subrahmanyam A, Barik U K. Synthesis of p-type transparent conducting silver:indium oxide (AIO) thin films by reactive electron beam evaporation technique. J Phys Chem Solids, 2005, 66:817 doi: 10.1016/j.jpcs.2004.10.007
[7]
Meng Y, Yang X, Chen H, et al. A new transparent conductive thin film In2O3:Mo. Thin Solid Films, 2001, 394:218 doi: 10.1016/S0040-6090(01)01142-7
[8]
Sun S, Huang J, Li D. Effects of H2 in indium-molybdenum oxide films during high density plasma evaporation at room temperature. Thin Solid Films, 2004, 469/470:6 doi: 10.1016/j.tsf.2004.06.183
[9]
Gordillo G, Moreno L C, de la Cruz W, et al. Preparation and characterization of SnO2 thin films deposited by spray pyrolysis from SnCl2 and SnCl4 precursors. Thin Solid Films, 1994, 252:61 doi: 10.1016/0040-6090(94)90826-5
[10]
Hu J, Gordon R G. Textured aluminum doped zinc oxide thin films from atmospheric pressure chemical vapor deposition. J Appl Phys, 1992, 71:880 doi: 10.1063/1.351309
[11]
Gupta R K, Ghosh K, Patel R, et al. Effect of thickness on optoelectrical properties of Mo-doped indium oxide films. Appl Surf Sci, 2008, 255:3046 doi: 10.1016/j.apsusc.2008.08.077
[12]
Benhaliliba M Benouis C E, Yakuphanoglu F, et al. Detailed investigation of submicrometer-sized grains of chemically sprayed (Sn1-xAlx, O2)(0≤x≤0.085) thin films. J Alloys Compd, 2012, 527:40 doi: 10.1016/j.jallcom.2012.02.128
[13]
Kykyneshi R, Zeng J, Cann D P. Transparent conducting oxides based on tin oxide. Chapter 6. In: Ginley D S, et al. ed. Handbook of transparent conductors. Springer, 2010
[14]
Huang F Q, Yang C Y, Wan D Y. Advanced solar materials for thin-film photovoltaic cells. Front Phys, 2011, 6(2):177 doi: 10.1007/s11467-011-0173-4
[15]
Karadeniz S, Tugluoglu N, Serin T, et al. The energy distribution of the interface state density of SnO2/p-Si (111) heterojunctions prepared at different substrate temperatures by spray deposition method. Appl Surf Sci, 2005, 246:30 doi: 10.1016/j.apsusc.2004.11.022
[16]
Benouis C E, Benhaliliba M, Yakuphanoglu F, et al. Physical properties of ultrasonic sprayed nanosized indium doped SnO2 films. Synthetic Metals, 2011, 161:1509 doi: 10.1016/j.synthmet.2011.04.017
[17]
Rhoderick E H, Williams R H. Metal-semiconductor contacts. Oxford:Clarendon, 1988
[18]
Carrasquillo K V, Pinto N J. Tunable MOS diodes fabricated from crossed electrospun SnO2/PEDOT-PSSA nanoribbons. Mater Sci Eng B, 2012, 177:805 doi: 10.1016/j.mseb.2012.03.032
[19]
Ozer M, Y°ld°z D E, Alt°ndal S, et al. Temperature dependence of characteristic parameters of the Au/SnO2/n-Si (MIS) MOS diodes. Solid-State Electron, 2007, 51:941 doi: 10.1016/j.sse.2007.04.013
[20]
Sze S M. Physics of semiconductor devices. 2nd ed. New York:John Wiley & Sons, 1981
[21]
Bar°ş B. Analysis of device parameters for Au/tin oxide/nSi(100) metal-oxide-semiconductor (MOS) diodes. Physica B, 2014, 438:65 doi: 10.1016/j.physb.2014.01.009
[22]
Cheung S K, Cheung N W. Extraction of MOS diode parameters from forward current-voltage characteristics. Appl Phys Lett, 1986, 49:85 doi: 10.1063/1.97359
[23]
Lee H Y, Wu B K, Chern M Y. Temperature dependence and the effect of hydrogen peroxide on ITO/poly-ZnO MOS diodes fabricated by laser evaporation. Curr Appl Phys, 2013, 13:1325 doi: 10.1016/j.cap.2013.04.007
[24]
Norde H. A modified forward I -V plot for MOS diodes with high series resistance. J Appl Phys, 1979, 50:5052 doi: 10.1063/1.325607
[25]
Farag A A M, Farooq W A, Yakuphanoglu F. Characterization and performance of MOS diode based on wide band gap semiconductor ZnO using a low-cost and simplified sol-gel spin coating technique. Microelectron Eng, 2011, 88:2894 doi: 10.1016/j.mee.2011.03.016
[26]
Altindal S, Kanbur H, Yildiz D E, et al. Current conduction mechanism in Al/p-Si MOS barrier diodes with native insulator layer at low temperatures. Appl Surf Sci, 2007, 253:5056 doi: 10.1016/j.apsusc.2006.11.015
[27]
Aydogan S, Incekara U, Deniz A R, et al. Extraction of electronic parameters of MOS diode based on an organic indigotindisulfonate sodium (IS). Solid State Commun, 2010, 150:1592 doi: 10.1016/j.ssc.2010.05.043
[28]
Aissa Z, Bouzidi A, Amlouk M. Study of the I -V characteristics of SnO2:F/AgInS2(p)/Al MOS diodes. J Alloys Compd, 2010, 506:492 doi: 10.1016/j.jallcom.2010.07.053
[29]
Ruan C H, Lin Y J, Che Y H, et al. Rectifying performance of p-type tin(Ⅱ) sulfide contacts on n-type silicon:effect of silicon nanowire sulfidation on electronic transport of heterojunction diodes. Mater Sci Semicond Process, 2015, 32:62 doi: 10.1016/j.mssp.2015.01.005
[30]
Yakuphanoglu F. Electrical characterization and device characterization of ZnO microring shaped films by sol-gel method. J Alloys Compd, 2010, 507:184 doi: 10.1016/j.jallcom.2010.07.151
[31]
Yakuphanoglu F, Caglar Y, Caglar M, et al. ZnO/p-Si heterojunction photodiode by sol-gel deposition of nanostructure n-ZnO film on p-Si substrate. Mater Sci Semicond Process, 2010, 13:137 doi: 10.1016/j.mssp.2010.05.005
[32]
Ruan C H, Lin Y J, Chen Y H, et al. Rectifying performance of p-type tin(Ⅱ) sulfide contacts on n-type silicon:effect of silicon nanowire sulfidation on electronic transport of heterojunction diodes. Mater Sci Semicond Process, 2015, 32:62 doi: 10.1016/j.mssp.2015.01.005
[33]
Farag A A M, Gunduz B, Yakuphanoglu F, et al. Controlling of electrical characteristics of Al/p-Si MOS diode by tris(8-hydroxyquinolinato) aluminum organic film. Synth Met, 2010, 160:2559 doi: 10.1016/j.synthmet.2010.10.005
[34]
Ho P S, Yang E S, Evans H L, et al. Electronic states at silicidesilicon interfaces. Phys Rev Lett, 1986, 56:177 doi: 10.1103/PhysRevLett.56.177
[35]
Chattopadhyay P, Raychaudhuri B. New technique for the determination of series resistance of MOS barrier diodes. Solid State Electron, 1992, 35:1023 doi: 10.1016/0038-1101(92)90337-C
[36]
Benhaliliba M. The barrier height and the series resistance of Ag/SnO2/Si/Au Schottky diode determined by Cheung and Lien methods. J New Technol Mater, 2015, 5:24 doi: 10.12816/0019429
[37]
Kim T W, Lee D U, Lee J H, et al. Structural, electrical, and optical properties of SnO2 nanocrystalline thin films grown on pInSb (111) substrates. J Appl Phys, 2001, 90:175 doi: 10.1063/1.1372159
[38]
Schroder D K. Semiconductor material and device characterization. John Wiley & Sons, 2016 http://www.productmanualguide.com/newpdf/semiconductor-device-and-materials-characterization.pdf
[39]
Ahaitouf A. Etude des effets des irradiations neutron sur des structures MOS, technologie N-MOS, par spectroscopie DLTS et mesures capacitives, Laboratoire lnterfaces Composants et M icroélectronique, Université de Metz, France, 1999
[40]
Ip K, Pearton S J, Norton D P, et al. Zinc oxide bulk, thin films and nanostructures. In: Jagadish C, Pearton S J, ed. Advances in processing of ZnO. 1st ed. Elsevier, 2006
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3135 Times PDF downloads: 33 Times Cited by: 0 Times

    History

    Received: 26 June 2016 Revised: 14 November 2016 Online: Published: 01 June 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      M. Benhaliliba, C.E. Benouis, M.S. Aida, A. Ayeshamariam. Fabrication of a novel MOS diode by indium incorporation control for microelectronic applications[J]. Journal of Semiconductors, 2017, 38(6): 064004. doi: 10.1088/1674-4926/38/6/064004 M. Benhaliliba, C.E. Benouis, M.S. Aida, A. Ayeshamariam. Fabrication of a novel MOS diode by indium incorporation control for microelectronic applications[J]. J. Semicond., 2017, 38(6): 064004. doi: 10.1088/1674-4926/38/6/064004.Export: BibTex EndNote
      Citation:
      M. Benhaliliba, C.E. Benouis, M.S. Aida, A. Ayeshamariam. Fabrication of a novel MOS diode by indium incorporation control for microelectronic applications[J]. Journal of Semiconductors, 2017, 38(6): 064004. doi: 10.1088/1674-4926/38/6/064004

      M. Benhaliliba, C.E. Benouis, M.S. Aida, A. Ayeshamariam. Fabrication of a novel MOS diode by indium incorporation control for microelectronic applications[J]. J. Semicond., 2017, 38(6): 064004. doi: 10.1088/1674-4926/38/6/064004.
      Export: BibTex EndNote

      Fabrication of a novel MOS diode by indium incorporation control for microelectronic applications

      doi: 10.1088/1674-4926/38/6/064004
      Funds:

      the Anvredet Project N° 18/DG/2016 "Projet Innovant:Synthèse et Caractérisation de Films Semiconducteurs Nanostructurés et Fabrication de Cellule Solaire" 

      Project supported by the Algerian Ministry of High Education and Scientific Research through the CNEPRU Project (No. B00L002UN310220130011) and the Anvredet Project N° 18/DG/2016 "Projet Innovant:Synthèse et Caractérisation de Films Semiconducteurs Nanostructurés et Fabrication de Cellule Solaire"

      by the Algerian Ministry of High Education and Scientific Research through the CNEPRU Project No. B00L002UN310220130011

      More Information
      • Corresponding author: M. Benhaliliba Email:mbenhaliliba@gmail.com
      • Received Date: 2016-06-26
      • Revised Date: 2016-11-14
      • Published Date: 2017-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return