SEMICONDUCTOR DEVICES

Theoretical simulation of performances in CIGS thin-film solar cells with cadmium-free buffer layer

Kang Luo1, Yulin Sun1, Liyu Zhou1, Fang Wang1, and Fang Wu1, 2

+ Author Affiliations

 Corresponding author: Fang Wu, Email:fangwu@mail.ustc.edu.cn

PDF

Abstract: Copper indium gallium selenium (CIGS) thin film solar cells have become one of the hottest topics in solar energy due to their high photoelectric transformation efficiency. To real applications, CIGS thin film is covered by the buffer layer and absorption layer. Traditionally, cadmium sulfide (CdS) is inserted into the middle of the window layer (ZnO) and absorption layer (CIGS) as a buffer layer. However, the application of the GIGS/CdS thin film solar cells has been limited because of the environmental pollution resulting from the toxic cadmium atom. Although zinc sulfide (ZnS) has been proposed to be one of the candidates, the performance of such battery cells has not been investigated. Here, in this paper, we systematically study the possibility of using zinc sulfide (ZnS) as a buffer layer. By including the effects of thickness, concentration of a buffer layer, intrinsic layer and the absorbing layer, we find that photoelectric transformation efficiency of ZnO/ZnS(n)/CIGS(i)/CIGS(p) solar cell is about 17.22%, which is qualified as a commercial solar cell. Moreover, we also find that the open-circuit voltage is~0.60 V, the short-circuit current is~36.99 mA/cm2 and the filled factor is~77.44%. Therefore, our results suggest that zinc sulfide may be the potential candidate of CdS as a buffer layer.

Key words: solar cellshetero junction structurecadmium-free buffer layer



[1]
Wolden C A, Kurtin J, Baxter J B, et al. Photovoltaic manufacturing:present status, future prospects, and research needs. J Vac Sci Technol, 2011, 29:030801 doi: 10.1116/1.3569757
[2]
Parisi A, Curcio L, Rocca V, et al. Thin film CIGS solar cells, photovoltaic modules, and the problems of modeling. J Photoenergy, 2013, 2013:1 https://www.hindawi.com/journals/ijp/2013/817424/
[3]
Peng L, Yang P, Zi X, et al. Progress of the Cd-free buffer layers used in Cu-based film solar cells. Mater Rev, 2014, 7:131 http://www.sciencedirect.com/science/article/pii/S0040609004016062
[4]
Ramanathan K, Contreras M A, Perkins C L, et al. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Prog Photovolt:Res Appl, 2003, 11:225 doi: 10.1002/(ISSN)1099-159X
[5]
Göde F, Gümüs C, Zor M. Investigations on the physical properties of the polycrystalline ZnS thin films deposited by the chemical bath deposition method. J Cryst Growth, 2007, 299:136 doi: 10.1016/j.jcrysgro.2006.10.266
[6]
Oliva A I, Castro-Rodríguez R, Solís-Canto O, et al. Comparison of properties of CdS thin films grown by two techniques. Appl Surf Sci, 2003, 205:56 doi: 10.1016/S0169-4332(02)01081-4
[7]
Berger L I, Pamplin B P. Properties of semiconductors. CRC Handbook of Chemistry & Physics, 1993:1278 https://www.elsevier.com/books/basic-properties-of-semiconductors/landsberg/978-0-444-88855-6
[8]
Nadeem M Y, Ahmed W. Optical properties of ZnS thin films. Turk J Phys, 2000, 24:651 https://www.researchgate.net/publication/255642555_Optical_Properties_of_ZnS_Thin_Films
[9]
Huo X X, Mo X L, Chen G R. Deposition technologies of Cd-free buffer layers in solar cells made of copper indium gallium diselenide films. Chin J Vac Sin Tech, 2012, 9:834 https://www.researchgate.net/publication/286560034_Deposition_technologies_of_Cd-free_buffer_layers_in_solar_cells_made_of_copper_indium_gallium_diselenide_films
[10]
Naghavi N, Abour D R, Allsop N. Buffer layers and transparent conducting oxides for chalcopyrite Cu(In, Ga)(S, Se)2 based thin film photovoltaics:present status and current developments. Prog Photovolt Res Appl, 2010, 18:411 doi: 10.1002/pip.955
[11]
Peng L J, Yang P Z, Zi X F, et al. Progress of the Cd-free buffer used in Cu-based film solar cells. Mat Rev A, 2014, 7:131 http://en.cnki.com.cn/Article_en/CJFDTotal-CLDB201413029.htm
[12]
Hariskos D, Spiering S, Powalla M. Buffer layers in Cu(In, Ga)Se2 solar cells and modules. Thin Solid Films, 2005, 480:99 https://www.researchgate.net/publication/222692907_Buffer_layers_in_CuInGaSe2_solar_cells_and_modules
[13]
Platzer-Bjorkman C, Torndahl T. Zn(O, S) buffer layers by atomic layer deposition in Cu(In, Ga)Se2 based thin film solar cells:band alignment and sulfur gradient. J Appl Phys, 2006, 8:100 https://www.researchgate.net/publication/234999659_ZnOS_buffer_layers_by_atomic_layer_deposition_in_CuInGaSe2_based_thin_film_solar_cells_Band_alignment_and_sulfur_gradient
[14]
Luo P F, Jiang G S, Zhu C F. Pulsed laser deposition ZnS buffer layers for CIGS solar cells chin. J Chem Phys, 2009, 22:97 doi: 10.1088/1674-0068/22/01/97-101/meta
[15]
Barrera M, Rubinelli F, Rey-Stolle I, et al. Numerical simulation of Ge solar cells using D-AMPS-1D code. Physica B, 2012, 407:3282 doi: 10.1016/j.physb.2011.12.087
[16]
Liu Y M, Heinzel D, Rockett A. A new solar cell simulator:wxAMPS. The 37th Photovoltmc Specialists Conference (PVSC), Seattle, 2011:2753 https://www.researchgate.net/publication/254027631_A_new_solar_cell_simulator_WxAMPS
[17]
Liu Y M, Heinzel D, Rockett A. A revised version of the amps simulation code. The 35th Photovoltmc Specialists Conference (PVSC), Hawaii, 2010:1943 https://www.researchgate.net/publication/224187322_A_revised_version_of_the_AMPS_simulation_code
[18]
Liu Y M, Sun Y, Rockett A. A new simulation software of solar cells-wxAMPS. Sol Energy Mater Sol Cells, 2012, 98:124 doi: 10.1016/j.solmat.2011.10.010
[19]
Bouloufa A, Djessas K, Zegadi A. Numerical simulation of CuInxGa(1-x)Se2 solar cells by AMPS-1D. Thin Solid Films, 2007, 515:6285 doi: 10.1016/j.tsf.2006.12.110
[20]
Basore P A. Numerical modeling of textured silicon solar cells using PC-1D. IEEE Trans Electron Device, 1990, 37:337 doi: 10.1109/16.46362
[21]
Liu J, Huang S H, He L. Simulation of a high-efficiency silicon-based heterojunction solar cell. J Semicond, 2015, 36:044010 doi: 10.1088/1674-4926/36/4/044010
[22]
Li Z Q, Xiao Y G, Li Z M S. Modeling of multi-junction solar cells by Crosslight APSYS. Proc SPIE, 2006, 6339:633909 doi: 10.1117/12.681258
[23]
Rode D L. Electron mobility in Ⅱ-Ⅵ semiconductors. Phys Rev B, 1970:24036 https://www.researchgate.net/publication/253305318_Electron_Mobility_in_II-VI_Semiconductors
[24]
Ramanathan K, Contreras M A, Perkins C L, et al. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Prog Photovolt Res Appl, 2003, 11:225 doi: 10.1002/(ISSN)1099-159X
[25]
Ghosh P K, Jana S, Nandy S, et al. Size-dependent optical and dielectric properties of nanocrystalline ZnS thin films synthesized via rf-magnetron sputtering technique. Mater Res Bull, 2007, 42:505 doi: 10.1016/j.materresbull.2006.06.019
[26]
Tetsuya T, Masayuki C, Yuji Y, et al. Insertion of thin interlayers under the negative electrode of C60 Schottky-type photovoltaic cells. Appl Phys Lett, 2004, 85:6412 doi: 10.1063/1.1841479
[27]
Bosio A, Romeo N, Podestá A, et al. Why CuInGaSe2 and CdTe polycrystalline thin film solar cells are more efficient than the corresponding single crystal. Cryst Res Technol, 2005, 40:1048 doi: 10.1002/(ISSN)1521-4079
Fig. 1.  A schematic diagram of ZnO/ZnS(n)/CIGS(i)/CIGS(p) solar cell.

Fig. 2.  The variations of $V_{\mathrm{oc}}$, $J_{\mathrm{sc}}$, FF, and Effi as a function of the buffer layer ZnS doping concentration.

Fig. 3.  The variations of $V_{\mathrm{oc}}$, $J_{\mathrm{sc}}$, FF and Effi as functions of the doping concentration of the absorbing layer CIGS.

Fig. 4.  The variations of $V_{\mathrm{oc}}$, $J_{\mathrm{sc}}$, FF and Effi as functions of the thickness of the intrinsic layer CIGS(i).

Fig. 5.  The variations of $V_{\mathrm{oc}}$, $J_{\mathrm{sc}}$, FF and Effi as functions of the thickness of the absorbing layer.

Table 1.   The main parameters of ZnO/ZnS(n)/CIGS(i)/CIGS(p) solar cell in the simulation.

[1]
Wolden C A, Kurtin J, Baxter J B, et al. Photovoltaic manufacturing:present status, future prospects, and research needs. J Vac Sci Technol, 2011, 29:030801 doi: 10.1116/1.3569757
[2]
Parisi A, Curcio L, Rocca V, et al. Thin film CIGS solar cells, photovoltaic modules, and the problems of modeling. J Photoenergy, 2013, 2013:1 https://www.hindawi.com/journals/ijp/2013/817424/
[3]
Peng L, Yang P, Zi X, et al. Progress of the Cd-free buffer layers used in Cu-based film solar cells. Mater Rev, 2014, 7:131 http://www.sciencedirect.com/science/article/pii/S0040609004016062
[4]
Ramanathan K, Contreras M A, Perkins C L, et al. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Prog Photovolt:Res Appl, 2003, 11:225 doi: 10.1002/(ISSN)1099-159X
[5]
Göde F, Gümüs C, Zor M. Investigations on the physical properties of the polycrystalline ZnS thin films deposited by the chemical bath deposition method. J Cryst Growth, 2007, 299:136 doi: 10.1016/j.jcrysgro.2006.10.266
[6]
Oliva A I, Castro-Rodríguez R, Solís-Canto O, et al. Comparison of properties of CdS thin films grown by two techniques. Appl Surf Sci, 2003, 205:56 doi: 10.1016/S0169-4332(02)01081-4
[7]
Berger L I, Pamplin B P. Properties of semiconductors. CRC Handbook of Chemistry & Physics, 1993:1278 https://www.elsevier.com/books/basic-properties-of-semiconductors/landsberg/978-0-444-88855-6
[8]
Nadeem M Y, Ahmed W. Optical properties of ZnS thin films. Turk J Phys, 2000, 24:651 https://www.researchgate.net/publication/255642555_Optical_Properties_of_ZnS_Thin_Films
[9]
Huo X X, Mo X L, Chen G R. Deposition technologies of Cd-free buffer layers in solar cells made of copper indium gallium diselenide films. Chin J Vac Sin Tech, 2012, 9:834 https://www.researchgate.net/publication/286560034_Deposition_technologies_of_Cd-free_buffer_layers_in_solar_cells_made_of_copper_indium_gallium_diselenide_films
[10]
Naghavi N, Abour D R, Allsop N. Buffer layers and transparent conducting oxides for chalcopyrite Cu(In, Ga)(S, Se)2 based thin film photovoltaics:present status and current developments. Prog Photovolt Res Appl, 2010, 18:411 doi: 10.1002/pip.955
[11]
Peng L J, Yang P Z, Zi X F, et al. Progress of the Cd-free buffer used in Cu-based film solar cells. Mat Rev A, 2014, 7:131 http://en.cnki.com.cn/Article_en/CJFDTotal-CLDB201413029.htm
[12]
Hariskos D, Spiering S, Powalla M. Buffer layers in Cu(In, Ga)Se2 solar cells and modules. Thin Solid Films, 2005, 480:99 https://www.researchgate.net/publication/222692907_Buffer_layers_in_CuInGaSe2_solar_cells_and_modules
[13]
Platzer-Bjorkman C, Torndahl T. Zn(O, S) buffer layers by atomic layer deposition in Cu(In, Ga)Se2 based thin film solar cells:band alignment and sulfur gradient. J Appl Phys, 2006, 8:100 https://www.researchgate.net/publication/234999659_ZnOS_buffer_layers_by_atomic_layer_deposition_in_CuInGaSe2_based_thin_film_solar_cells_Band_alignment_and_sulfur_gradient
[14]
Luo P F, Jiang G S, Zhu C F. Pulsed laser deposition ZnS buffer layers for CIGS solar cells chin. J Chem Phys, 2009, 22:97 doi: 10.1088/1674-0068/22/01/97-101/meta
[15]
Barrera M, Rubinelli F, Rey-Stolle I, et al. Numerical simulation of Ge solar cells using D-AMPS-1D code. Physica B, 2012, 407:3282 doi: 10.1016/j.physb.2011.12.087
[16]
Liu Y M, Heinzel D, Rockett A. A new solar cell simulator:wxAMPS. The 37th Photovoltmc Specialists Conference (PVSC), Seattle, 2011:2753 https://www.researchgate.net/publication/254027631_A_new_solar_cell_simulator_WxAMPS
[17]
Liu Y M, Heinzel D, Rockett A. A revised version of the amps simulation code. The 35th Photovoltmc Specialists Conference (PVSC), Hawaii, 2010:1943 https://www.researchgate.net/publication/224187322_A_revised_version_of_the_AMPS_simulation_code
[18]
Liu Y M, Sun Y, Rockett A. A new simulation software of solar cells-wxAMPS. Sol Energy Mater Sol Cells, 2012, 98:124 doi: 10.1016/j.solmat.2011.10.010
[19]
Bouloufa A, Djessas K, Zegadi A. Numerical simulation of CuInxGa(1-x)Se2 solar cells by AMPS-1D. Thin Solid Films, 2007, 515:6285 doi: 10.1016/j.tsf.2006.12.110
[20]
Basore P A. Numerical modeling of textured silicon solar cells using PC-1D. IEEE Trans Electron Device, 1990, 37:337 doi: 10.1109/16.46362
[21]
Liu J, Huang S H, He L. Simulation of a high-efficiency silicon-based heterojunction solar cell. J Semicond, 2015, 36:044010 doi: 10.1088/1674-4926/36/4/044010
[22]
Li Z Q, Xiao Y G, Li Z M S. Modeling of multi-junction solar cells by Crosslight APSYS. Proc SPIE, 2006, 6339:633909 doi: 10.1117/12.681258
[23]
Rode D L. Electron mobility in Ⅱ-Ⅵ semiconductors. Phys Rev B, 1970:24036 https://www.researchgate.net/publication/253305318_Electron_Mobility_in_II-VI_Semiconductors
[24]
Ramanathan K, Contreras M A, Perkins C L, et al. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Prog Photovolt Res Appl, 2003, 11:225 doi: 10.1002/(ISSN)1099-159X
[25]
Ghosh P K, Jana S, Nandy S, et al. Size-dependent optical and dielectric properties of nanocrystalline ZnS thin films synthesized via rf-magnetron sputtering technique. Mater Res Bull, 2007, 42:505 doi: 10.1016/j.materresbull.2006.06.019
[26]
Tetsuya T, Masayuki C, Yuji Y, et al. Insertion of thin interlayers under the negative electrode of C60 Schottky-type photovoltaic cells. Appl Phys Lett, 2004, 85:6412 doi: 10.1063/1.1841479
[27]
Bosio A, Romeo N, Podestá A, et al. Why CuInGaSe2 and CdTe polycrystalline thin film solar cells are more efficient than the corresponding single crystal. Cryst Res Technol, 2005, 40:1048 doi: 10.1002/(ISSN)1521-4079
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3348 Times PDF downloads: 58 Times Cited by: 0 Times

    History

    Received: 31 December 2016 Revised: 14 February 2017 Online: Published: 01 August 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Kang Luo, Yulin Sun, Liyu Zhou, Fang Wang, Fang Wu. Theoretical simulation of performances in CIGS thin-film solar cells with cadmium-free buffer layer[J]. Journal of Semiconductors, 2017, 38(8): 084006. doi: 10.1088/1674-4926/38/8/084006 K Luo, Y L Sun, L Y Zhou, F Wang, F Wu. Theoretical simulation of performances in CIGS thin-film solar cells with cadmium-free buffer layer[J]. J. Semicond., 2017, 38(8): 084006. doi: 10.1088/1674-4926/38/8/084006.Export: BibTex EndNote
      Citation:
      Kang Luo, Yulin Sun, Liyu Zhou, Fang Wang, Fang Wu. Theoretical simulation of performances in CIGS thin-film solar cells with cadmium-free buffer layer[J]. Journal of Semiconductors, 2017, 38(8): 084006. doi: 10.1088/1674-4926/38/8/084006

      K Luo, Y L Sun, L Y Zhou, F Wang, F Wu. Theoretical simulation of performances in CIGS thin-film solar cells with cadmium-free buffer layer[J]. J. Semicond., 2017, 38(8): 084006. doi: 10.1088/1674-4926/38/8/084006.
      Export: BibTex EndNote

      Theoretical simulation of performances in CIGS thin-film solar cells with cadmium-free buffer layer

      doi: 10.1088/1674-4926/38/8/084006
      Funds:

      the NSF of Jiangsu Province BK2013142

      Project supported by the NSF of Jiangsu Province (No. BK20131420) and the NJFU Outstanding Young Scholars Funding

      the NJFU Outstanding Young Scholars Funding 

      More Information
      • Corresponding author: Fang Wu, Email:fangwu@mail.ustc.edu.cn
      • Received Date: 2016-12-31
      • Revised Date: 2017-02-14
      • Published Date: 2017-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return