SEMICONDUCTOR PHYSICS

Effects of incident energy and angle on carbon cluster ions implantation on silicon substrate:a molecular dynamics study

Ye Wei1, Shengbo Sang1, , Bing Zhou2, , Xiao Deng3, Jing Chai1, Jianlong Ji1, Yang Ge1, Yuanliang Huo1 and Wendong Zhang1

+ Author Affiliations

 Corresponding author: Shengbo Sang, Email: sangshengbo@tyut.edu.cn; Bing Zhou, Email: zhoubing@tyut.edu.cn

PDF

Abstract: Carbon cluster ion implantation is an important technique in fabricating functional devices at micro/nanoscale. In this work, a numerical model is constructed for implantation and implemented with a cutting-edge molecular dynamics method. A series of simulations with varying incident energies and incident angles is performed for incidence on silicon substrate and correlated effects are compared in detail. Meanwhile, the behavior of the cluster during implantation is also examined under elevated temperatures. By mapping the nanoscopic morphology with variable parameters, numerical formalism is proposed to explain the different impacts on phrase transition and surface pattern formation. Particularly, implantation efficiency (IE) is computed and further used to evaluate the performance of the overall process. The calculated results could be properly adopted as the theoretical basis for designing nano-structures and adjusting devices' properties.

Key words: implantationlow incident energiesirradiationmolecular dynamics



[1]
Garg S K, Datta D P, Kumar M, et al. 60 keV ArC-ion induced pattern formation on Si surface:roles of sputter erosion and atomic redistribution. Appl Surf Sci, 2014, 310:147 doi: 10.1016/j.apsusc.2014.03.115
[2]
Hofsäss H, Zhang K, Bobes O. Self-organized surface ripple pattern formation by ion implantation. J Appl Phys, 2016, 120(13):135308 doi: 10.1063/1.4964113
[3]
Zhang C Z, Bhattacharya S, Li Y S, et al. Effect of ion energy on microstructure and adhesion of diamond-like carbon on Ti6Al4V by ion beam deposition. Diamond Relat Mater, 2016, 70:12 doi: 10.1016/j.diamond.2016.09.013
[4]
de Fátim S, Mariano M, Ued M, et al. Magnetic-field enhanced plasma immersion ion implantation and deposition (PⅢ&D) of diamond-like carbon films inside tubes. Surf Coat Technol, 2017, 312:47 doi: 10.1016/j.surfcoat.2016.08.077
[5]
Li L L, Zhou X J, Yu Z G, et al. Effect of phosphorus ion implan-tation on back gate effect of partially depleted SOI NMOS under total dose radiation. J Semicond, 2015, 36(1):014006 doi: 10.1088/1674-4926/36/1/014006
[6]
He B P, Wang Z J, Sheng J K, et al. Total ionizing dose radiation effects on NMOS parasitic transistors in advanced bulk CMOS technology devices. J Semicond, 2016, 37(12):124003 doi: 10.1088/1674-4926/37/12/124003
[7]
Luo B R, Gao E L, Geng D C, et al. Etching-controlled growth of graphene by chemical vapor deposition. Chem Mater, 2017, 29(3):1022 doi: 10.1021/acs.chemmater.6b03672
[8]
Heviaa S A, Guzmán-Olivos F, Muñoz I, et al. Nanostructured substrate effects on diamond-like carbon films properties grown by pulsed laser deposition. Surf Coat Technol, 2017, 312:55 doi: 10.1016/j.surfcoat.2016.08.083
[9]
Borschel C, Ronning C. Ion beam irradiation of nanostructure-a 3D Monte Carlo simulation code. Nucl Instrum Methods Phys Res B, 2011, 269: 2133 doi: 10.1016/j.nimb.2011.07.004
[10]
Delcorte A, Debongnie M. Macromolecular sample sputtering by large Ar and CH4 clusters:elucidating chain size and projectile effects with molecular dynamics. J Phys Chem C, 2015, 119:25868 doi: 10.1021/acs.jpcc.5b07007
[11]
Wei Y, Zhan H F, Xia K, et al. Resonance of graphene nanoribbons doped with nitrogen and boron:a molecular dynamics study. Beilstein J Nanotechnol, 2014, 5:717 doi: 10.3762/bjnano.5.84
[12]
Kunal K, Aluru N. Intrinsic dissipation in a nano-mechanical resonator. J Appl Phys, 2014, 116(9):094304 doi: 10.1063/1.4894282
[13]
Czerwinski B, Rzeznik L, Paruch R, et al. Molecular dynamics computer simulations of 5 keV C60 bombardment of benzene crystal. Vacuum, 2009, 83:S95 doi: 10.1016/j.vacuum.2009.01.034
[14]
Norris S A, Samela J, Bukonte L, et al. Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation. Nat Commun, 2011, 2:276 doi: 10.1038/ncomms1280
[15]
Zhang J, Liu C, Fan J. Comparison of Cu thin films deposited on Si substrates with different surfaces and temperatures. Appl Surf Sci, 2013, 276:417 doi: 10.1016/j.apsusc.2013.03.109
[16]
Wu B, Zhou J Q, Xue C, et al. Molecular dynamics simulation of the deposition and annealing of NiAl film on Ni substrate. Appl Surf Sci, 2015, 355:1145 doi: 10.1016/j.apsusc.2015.07.208
[17]
Lv Y N, Hodgson P, Kong L X, et al. Study of growth mechanism of TiC cluster in ferrite via molecular dynamics simulation. Mater Lett, 2015, 159:389 doi: 10.1016/j.matlet.2015.07.039
[18]
Wiatrowski A, Kijaszek W, Posadowski W M, et al. Deposition of diamond-like carbon thin films by the high power impulse magnetron sputtering method. Diamond Relat Mater, 2017, 72:71 doi: 10.1016/j.diamond.2017.01.007
[19]
Tsuchiya M, Murakami K, Magara K, et al. Structural and electrical properties and current-voltage characteristics of nitrogendoped diamond-like carbon films on Si substrates by plasmaenhanced chemical vapor deposition. Jpn J Appl Phys, 2016, 55(6):065502 doi: 10.7567/JJAP.55.065502
[20]
Zhao J F, Lemoine P, Liu Z H, et al. A study of microstructure and nanomechanical properties of silicon incorporated DLC films deposited on silicon substrates. Diamond Relat Materi, 2001, 10(3-7):1070 doi: 10.1016/S0925-9635(00)00544-6
[21]
Postawa Z, Paruch R, Rzeznik L, et al. Dynamics of large Ar cluster bombardment of organic solids. Surf Interface Anal, 2013, 45(1):35 doi: 10.1002/sia.4927
[22]
Garrison B J, Postawa Z. Computational view of surface based organic mass spectrometry. Mass Spectrom Rev, 2008, 27(4):289 doi: 10.1002/mas.v27:4
[23]
Humphrey W, Dalke A, Schulten K. VMD:visual molecular dynamics. J Molecul Graph, 1996, 14(1):33 doi: 10.1016/0263-7855(96)00018-5
[24]
Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117(1):1 doi: 10.1006/jcph.1995.1039
[25]
Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath. J Chem Phys, 1984, 81(8):3684 doi: 10.1063/1.448118
[26]
Joseph S, Aluru N R. Why are carbon nanotubes fast transporters of water. Nano Lett, 2008, 8(2):452 doi: 10.1021/nl072385q
[27]
Wang Y, Scheerschmidt K, Gösele U. Theoretical investigations of bond properties in graphite and graphitic silicon. Phys Rev B, 2000, 61(19):12864 doi: 10.1103/PhysRevB.61.12864
[28]
Hwang S F, Li Y H, Hong Z H. Molecular dynamic simulation for Cu cluster deposition on Si substrate. Comput Mater Sci, 2012, 56:85 doi: 10.1016/j.commatsci.2012.01.010
[29]
Czerwinski B, Rzeznik L, Paruch R, et al. Effect of impact angle and projectile size on sputtering efficiency of solid benzene investigated by molecular dynamics simulations. Nucl Instrum Methods Phys Res B, 2014, 269:1578
[30]
Ju S P, Weng C I, Chang J G, et al. Topographic study of sputterdeposited film with different process parameters. J Appl Phys, 2001, 89(12):7825 doi: 10.1063/1.1371007
Fig. 2.  (Color online) Initial model before implantation. (a) Side view. (b) Top view. a is silicon substrate atom lattice constant, 5.43 Å. The projectile is moving in xoz plane. $\theta$ is incident angle. The substrate size is 14.2 × 14.2 × 7.1 nm3. The exterior 2 layers and bottom 5 layers of substrate are fixed to secure the stability during simulation. In order to deeply and thoroughly understand implantation process in a simplified manner, single particle impacts are considered[14].

Fig. 1.  Flow chart of implementation methods.

Fig. 3.  (Color online) Top view of surface morphology evolution. (a) Implantation at 100 K with KE = 100 eV. (b) Implantation at 800 K with KE = 100 eV. Both cases occur with an incident angle of 60$^\circ$. KE represents kinetic energy. Pink is substrate atoms, red is incident cluster ions atoms.

Fig. 4.  (Color online) Top view of surface morphology evolution. (a) Implantation at $45^{\circ }$ with KE = 100 eV. (b) Implantation at $0^{\circ }$ with KE = 100 eV. Both cases occur at 300 K. KE represents kinetic energy. Coloring scheme is the same as in Fig. 3.

Fig. 5.  (Color online) Top view of surface morphology evolution. (a) Implantation with KE = 200 eV. (b)Implantation with KE = 650 eV. Both cases occur with an incident angle of $30^{\circ }$ at 300 K. KE represents kinetic energy. The coloring scheme is the same as Fig. 3.

Fig. 8.  (Color online) Equilibrium structures after implantation at different incident energies. (a) (b) Implantation with KE = 100 eV. (c) (d) Implantation with KE = 300 eV. (e) (f) Implantation with KE = 500 eV. (g) (h) Implantation with KE = 800 eV. (a) (c) (e) (g) are top view and (b) (d) (f) (h) are cross sectional view. All cases occur at $10^{\circ }$ with the same temperature of 300 K. KE represents kinetic energy of incident cluster.

Fig. 9.  (Color online) (a) Maximum depth and implanted efficiency (IE) as a function of incident angle. (b) Maximum depth and IE as a function of substrate temperature. (c) Maximum depth and IE as a function of kinetic energy.

Fig. 6.  (Color online) Equilibrium structures after implantation at different temperatures. (a) (b) Implantation at 200 K with KE = 100 eV. (c) (d) Implantation at 500 K with KE = 100 eV. (e) (f) Implantation at 800 K with KE = 100 eV. (e) (f) Implantation at 1000 K with KE = 100 eV. (a) (c) (e) (g) are top view and (b) (d) (f) (h) are cross sectional view. All simulations occur with an incident angle of $60^{\circ }$. KE represents kinetic energy of incident cluster.

Fig. 7.  (Color online) Equilibrium structures after implantation at different incident angles. (a) (b) Implantation at $0^{\circ }$ with KE = 100 eV. (c) (d) Implantation at $60^{\circ }$ with KE = 100 eV. (e) (f) Implantation at $45^{\circ }$ with KE = 100 eV. (e) (f) Implantation at $30^{\circ }$ with KE = 100 eV. (a) (c) (e) (g) are top view and (b) (d) (f) (h) are cross sectional view. All simulations occur at 300 K. KE represents kinetic energy of incident cluster.

[1]
Garg S K, Datta D P, Kumar M, et al. 60 keV ArC-ion induced pattern formation on Si surface:roles of sputter erosion and atomic redistribution. Appl Surf Sci, 2014, 310:147 doi: 10.1016/j.apsusc.2014.03.115
[2]
Hofsäss H, Zhang K, Bobes O. Self-organized surface ripple pattern formation by ion implantation. J Appl Phys, 2016, 120(13):135308 doi: 10.1063/1.4964113
[3]
Zhang C Z, Bhattacharya S, Li Y S, et al. Effect of ion energy on microstructure and adhesion of diamond-like carbon on Ti6Al4V by ion beam deposition. Diamond Relat Mater, 2016, 70:12 doi: 10.1016/j.diamond.2016.09.013
[4]
de Fátim S, Mariano M, Ued M, et al. Magnetic-field enhanced plasma immersion ion implantation and deposition (PⅢ&D) of diamond-like carbon films inside tubes. Surf Coat Technol, 2017, 312:47 doi: 10.1016/j.surfcoat.2016.08.077
[5]
Li L L, Zhou X J, Yu Z G, et al. Effect of phosphorus ion implan-tation on back gate effect of partially depleted SOI NMOS under total dose radiation. J Semicond, 2015, 36(1):014006 doi: 10.1088/1674-4926/36/1/014006
[6]
He B P, Wang Z J, Sheng J K, et al. Total ionizing dose radiation effects on NMOS parasitic transistors in advanced bulk CMOS technology devices. J Semicond, 2016, 37(12):124003 doi: 10.1088/1674-4926/37/12/124003
[7]
Luo B R, Gao E L, Geng D C, et al. Etching-controlled growth of graphene by chemical vapor deposition. Chem Mater, 2017, 29(3):1022 doi: 10.1021/acs.chemmater.6b03672
[8]
Heviaa S A, Guzmán-Olivos F, Muñoz I, et al. Nanostructured substrate effects on diamond-like carbon films properties grown by pulsed laser deposition. Surf Coat Technol, 2017, 312:55 doi: 10.1016/j.surfcoat.2016.08.083
[9]
Borschel C, Ronning C. Ion beam irradiation of nanostructure-a 3D Monte Carlo simulation code. Nucl Instrum Methods Phys Res B, 2011, 269: 2133 doi: 10.1016/j.nimb.2011.07.004
[10]
Delcorte A, Debongnie M. Macromolecular sample sputtering by large Ar and CH4 clusters:elucidating chain size and projectile effects with molecular dynamics. J Phys Chem C, 2015, 119:25868 doi: 10.1021/acs.jpcc.5b07007
[11]
Wei Y, Zhan H F, Xia K, et al. Resonance of graphene nanoribbons doped with nitrogen and boron:a molecular dynamics study. Beilstein J Nanotechnol, 2014, 5:717 doi: 10.3762/bjnano.5.84
[12]
Kunal K, Aluru N. Intrinsic dissipation in a nano-mechanical resonator. J Appl Phys, 2014, 116(9):094304 doi: 10.1063/1.4894282
[13]
Czerwinski B, Rzeznik L, Paruch R, et al. Molecular dynamics computer simulations of 5 keV C60 bombardment of benzene crystal. Vacuum, 2009, 83:S95 doi: 10.1016/j.vacuum.2009.01.034
[14]
Norris S A, Samela J, Bukonte L, et al. Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation. Nat Commun, 2011, 2:276 doi: 10.1038/ncomms1280
[15]
Zhang J, Liu C, Fan J. Comparison of Cu thin films deposited on Si substrates with different surfaces and temperatures. Appl Surf Sci, 2013, 276:417 doi: 10.1016/j.apsusc.2013.03.109
[16]
Wu B, Zhou J Q, Xue C, et al. Molecular dynamics simulation of the deposition and annealing of NiAl film on Ni substrate. Appl Surf Sci, 2015, 355:1145 doi: 10.1016/j.apsusc.2015.07.208
[17]
Lv Y N, Hodgson P, Kong L X, et al. Study of growth mechanism of TiC cluster in ferrite via molecular dynamics simulation. Mater Lett, 2015, 159:389 doi: 10.1016/j.matlet.2015.07.039
[18]
Wiatrowski A, Kijaszek W, Posadowski W M, et al. Deposition of diamond-like carbon thin films by the high power impulse magnetron sputtering method. Diamond Relat Mater, 2017, 72:71 doi: 10.1016/j.diamond.2017.01.007
[19]
Tsuchiya M, Murakami K, Magara K, et al. Structural and electrical properties and current-voltage characteristics of nitrogendoped diamond-like carbon films on Si substrates by plasmaenhanced chemical vapor deposition. Jpn J Appl Phys, 2016, 55(6):065502 doi: 10.7567/JJAP.55.065502
[20]
Zhao J F, Lemoine P, Liu Z H, et al. A study of microstructure and nanomechanical properties of silicon incorporated DLC films deposited on silicon substrates. Diamond Relat Materi, 2001, 10(3-7):1070 doi: 10.1016/S0925-9635(00)00544-6
[21]
Postawa Z, Paruch R, Rzeznik L, et al. Dynamics of large Ar cluster bombardment of organic solids. Surf Interface Anal, 2013, 45(1):35 doi: 10.1002/sia.4927
[22]
Garrison B J, Postawa Z. Computational view of surface based organic mass spectrometry. Mass Spectrom Rev, 2008, 27(4):289 doi: 10.1002/mas.v27:4
[23]
Humphrey W, Dalke A, Schulten K. VMD:visual molecular dynamics. J Molecul Graph, 1996, 14(1):33 doi: 10.1016/0263-7855(96)00018-5
[24]
Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117(1):1 doi: 10.1006/jcph.1995.1039
[25]
Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath. J Chem Phys, 1984, 81(8):3684 doi: 10.1063/1.448118
[26]
Joseph S, Aluru N R. Why are carbon nanotubes fast transporters of water. Nano Lett, 2008, 8(2):452 doi: 10.1021/nl072385q
[27]
Wang Y, Scheerschmidt K, Gösele U. Theoretical investigations of bond properties in graphite and graphitic silicon. Phys Rev B, 2000, 61(19):12864 doi: 10.1103/PhysRevB.61.12864
[28]
Hwang S F, Li Y H, Hong Z H. Molecular dynamic simulation for Cu cluster deposition on Si substrate. Comput Mater Sci, 2012, 56:85 doi: 10.1016/j.commatsci.2012.01.010
[29]
Czerwinski B, Rzeznik L, Paruch R, et al. Effect of impact angle and projectile size on sputtering efficiency of solid benzene investigated by molecular dynamics simulations. Nucl Instrum Methods Phys Res B, 2014, 269:1578
[30]
Ju S P, Weng C I, Chang J G, et al. Topographic study of sputterdeposited film with different process parameters. J Appl Phys, 2001, 89(12):7825 doi: 10.1063/1.1371007
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3999 Times PDF downloads: 484 Times Cited by: 0 Times

    History

    Received: 23 November 2016 Revised: 10 April 2017 Online: Published: 01 September 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Ye Wei, Shengbo Sang, Bing Zhou, Xiao Deng, Jing Chai, Jianlong Ji, Yang Ge, Yuanliang Huo, Wendong Zhang. Effects of incident energy and angle on carbon cluster ions implantation on silicon substrate:a molecular dynamics study[J]. Journal of Semiconductors, 2017, 38(9): 092002. doi: 10.1088/1674-4926/38/9/092002 Y Wei, S B Sang, B Zhou, X Deng, J Chai, J L Ji, Y Ge, Y L Huo, W D Zhang. Effects of incident energy and angle on carbon cluster ions implantation on silicon substrate:a molecular dynamics study[J]. J. Semicond., 2017, 38(9): 092002. doi: 10.1088/1674-4926/38/9/092002.Export: BibTex EndNote
      Citation:
      Ye Wei, Shengbo Sang, Bing Zhou, Xiao Deng, Jing Chai, Jianlong Ji, Yang Ge, Yuanliang Huo, Wendong Zhang. Effects of incident energy and angle on carbon cluster ions implantation on silicon substrate:a molecular dynamics study[J]. Journal of Semiconductors, 2017, 38(9): 092002. doi: 10.1088/1674-4926/38/9/092002

      Y Wei, S B Sang, B Zhou, X Deng, J Chai, J L Ji, Y Ge, Y L Huo, W D Zhang. Effects of incident energy and angle on carbon cluster ions implantation on silicon substrate:a molecular dynamics study[J]. J. Semicond., 2017, 38(9): 092002. doi: 10.1088/1674-4926/38/9/092002.
      Export: BibTex EndNote

      Effects of incident energy and angle on carbon cluster ions implantation on silicon substrate:a molecular dynamics study

      doi: 10.1088/1674-4926/38/9/092002
      Funds:

      National Natural Science Foundation of China 51622507

      Specialized Project in Public Welfare from The Ministry of Water Resources of China 1261530110110

      National Natural Science Foundation of China 61471255

      Doctoral Fund of MOE of China 20131402110013

      Natural Science Foundation of Shanxi 201601D021057

      National Natural Science Foundation of China 61474079

      Natural Science Foundation of Shanxi 201603D421035

      National Natural Science Foundation of China 51502193

      National Natural Science Foundation of China 61403273

      National High Technology Research and Development Program of China 2015AA042601

      Youth Foundation Project of Shanxi Province 2015021097

      Project supported by the National Natural Science Foundation of China (Nos. 51622507, 61471255, 61474079, 61403273, 51502193, 51205273), the Natural Science Foundation of Shanxi (Nos. 201601D021057, 201603D421035), the Youth Foundation Project of Shanxi Province (Nos. 2015021097), the Doctoral Fund of MOE of China (No. 20131402110013), the National High Technology Research and Development Program of China (No. 2015AA042601), and the Specialized Project in Public Welfare from The Ministry of Water Resources of China (Nos. 1261530110110)

      National Natural Science Foundation of China 51205273

      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return