SEMICONDUCTOR DEVICES

A new RF trench-gate multi-channel laterally-diffused MOSFET on InGaAs

M. Payal and Y. Singh

+ Author Affiliations

 Corresponding author: Y. Singh, Email: om_ysingh@yahoo.co.in

PDF

Abstract: In this work, a new RF power trench-gate multi-channel laterally-diffused MOSFET (TGMC-LDMOS) on InGaAs is proposed. The gate-electrodes of the new structure are placed vertically in the trenches built in the drift layer. Each gate results in the formation of two channels in the p-body region of the device. The drain metal is also placed in a trench to take contact from the n+-InGaAs region located over the substrate. In a cell length of 5 μm, the TGMC-LDMOS structure has seven channels, which conduct simultaneously to carry drain current in parallel. The formation of multi-channels in the proposed device increases the drive current (ID) leading to a large reduction in the specific on-resistance (Ron-sp). Due to better control of gates on the drain current, the new structure exhibits substantially higher transconductance (gm) resulting in significant improvement in cut-off frequency (fT) and oscillation frequency (fmax). Using two-dimensional numerical simulations, a 55 V TGMC-LDMOS is demonstrated to achieve 7 times higher ID, 6.2 times lower Ron-sp, 6.3 times higher peak gm, 2.6 times higher fT, and 2.5 times increase in fmax in comparison to a conventional device for the identical cell length.

Key words: InGaAstrench-gatemulti-channelRF LDMOS



[1]
Darabi H. Radio frequency integrated circuits and systems. Cambridge University Press, 2015
[2]
Erlbacher T. Lateral power transistors in integrated circuits. Springer Int Pub, 2014
[3]
Baliga B J. Silicon RF power MOSFETs. Singapore: World Scientific, 2005
[4]
Orouji A A, Pak A. Numerical simulation of lateral diffused metal oxide semiconductor field effect transistors:a novel technique for electric field control to improve breakdown voltage. Mater Sci Semi Process, 2015, 34:230 doi: 10.1016/j.mssp.2015.02.027
[5]
Sandeep S, Komaragiri R. Drift region optimization by double epitaxial layer in low and medium power rated silicon power MOSFETs. J Mater Sci Mater Electron, 2015, 26:230 doi: 10.1007/s10856-015-5561-9
[6]
Punetha M, Singh Y. A 100 V high-performance SOI trench LDMOS with low cell pitch. J Electron Mater, 2015, 10:3388 doi: 10.1007/s11664-015-3834-1
[7]
Singh Y, Punetha M. A lateral trench dual gate power MOSFET on thin SOI for improved performance. J Solid State Sci Tech, 2013, 2:Q113 doi: 10.1149/2.021307jss
[8]
Singh Y, Rawat R S. High figure-of-merit SOI power LDMOS for power integrated circuits. Eng Sci Tech Int J, 2015, 18:141 doi: 10.1016/j.jestch.2014.10.004
[9]
Hu Y, Wang G, Chang S, et al. Effect of silicon window polarity on partial-SOI LDMOSFETs. Micro Nano Lett, 2012, 7:628 doi: 10.1049/mnl.2012.0351
[10]
Du W, Lyu X, Chen X. An LDMOS with large SOA and low specific on-resistance. J Semicond, 2016, 37:054006 doi: 10.1088/1674-4926/37/5/054006
[11]
Xu Q, Luo X, Zhou K, et al. Ultralow specific on-resistance high voltage trench SOI LDMOS with enhanced RESURF effect. J Semicond, 2015, 36(2):024010 doi: 10.1088/1674-4926/36/2/024010
[12]
Fan Y, Luo X, Zhou K, et al. An L-shaped low on-resistance current path SOI LDMOS with dielectric field enhancement. J Semicond, 2014, 35(3):034011 doi: 10.1088/1674-4926/35/3/034011
[13]
Luo X, Wang X, Hu G, et al. Experimental and theoretical study of an improved breakdown voltage SOI LDMOS with a reduced cell pitch. J Semicond, 2014, 35(2):024007 doi: 10.1088/1674-4926/35/2/024007
[14]
Ge R, Luo X, Jiang Y, et al. A low on-resistance SOI LDMOS using a trench gate and a recessed drain. J Semicond, 2012, 33(7):074005 doi: 10.1088/1674-4926/33/7/074005
[15]
Hu X, Zhang B, Luo X, et al. A new high voltage SOI LDMOS with triple RESURF structure. J Semicond, 2011, 32(7):074006 doi: 10.1088/1674-4926/32/7/074006
[16]
Payal M, Singh Y. A multi-channel trench-gate (MCTG) RF LDMOS on SOI. IETE Tech Rev, 2016:1 doi: 10.1080/02564602.2016.1166993
[17]
Yu T, Luo L. An RF LDMOS with excellent efficiency and ruggedness based on a modified CMOS process. J Semicond, 2013, 34(9):094007 doi: 10.1088/1674-4926/34/9/094007
[18]
Punetha M, Singh Y. SOI dual-gate trench LDMOSFET for RF integrated power amplifiers. IETE Tech Rev, 2016:1 doi: 10.1080/02564602.2016.1199978?journalCode=titr20
[19]
Punetha M, Singh Y. Dual-channel trench LDMOS on SOI for RF power amplifier applications. J Comput Electron, 2015, 15:639
[20]
Chen K M, Huang G W, Chen B Y, et al. LDMOS transistor high-frequency performance enhancements by strain. IEEE Electron Device Lett, 2012, 33:471 doi: 10.1109/LED.2011.2182494
[21]
Chen K M, Chen B Y, Chiu C S, et al. Performance improvement in RF LDMOS transistors using wider drain contact. IEEE Electron Device Lett, 2013, 34:1085 doi: 10.1109/LED.2013.2272937
[22]
Yang R, Li J F, Qian H, et al. A short-channel SOI RF power LDMOS technology with TiSi2 salicide on dual sidewalls with cutoff frequency fT 19.3 GHz. IEEE Electron Device Lett, 2006, 27:917 doi: 10.1109/LED.2006.883561
[23]
Seoane N, Garcia-Loureiro A J, Kalna K, et al. Random dopant related variability in the 30 nm gate length In0.75Ga0.25As implant free MOSFET. J Comput Electron, 2008, 7:159 doi: 10.1007/s10825-008-0233-3
[24]
Adhikari M S, Singh Y. High-performance dual-channel InGaAs MOSFET for small signal RF applications. Electron Lett, 2015, 51:1203 doi: 10.1049/el.2015.0980
[25]
Dehzangi A, Wee M F M R, Wichmann N, et al. Threshold voltage study of scaled self-aligned In0.53Ga0.47As metal oxide semiconductor field effect transistor for different source/drain doping concentrations. Micro Nano Lett, 2014, 9:181
[26]
Zhou J H, Chang H D, Zhang X F, et al. Fabrication of a novel RF switch device with high performance using In0.4Ga0.6As MOSFET technology. J Semicond, 2016, 37:024005 doi: 10.1088/1674-4926/37/2/024005
[27]
Steighner J B, Yuan J S, Liu Y. Simulation and analysis of InGaAs power MOSFET performances and reliability. IEEE Trans Electron Device, 2011, 58:180 doi: 10.1109/TED.2010.2089460
[28]
Singh Y, Badiyari M. Performance optimization of InGaAs power LDMOSFET. Microelectron J, 2015, 5:404 http://www.sciencedirect.com/science/article/pii/S0026269215000439
[29]
Adhikari M S, Singh Y. High performance DCTG-LDMOS on InGaAs for RF power amplifier applications. Mater Sci Semi Process, 2015, 40:861 doi: 10.1016/j.mssp.2015.07.067
[30]
Singh Y, Adhikari M S. Performance evaluation of a lateral trench-gate power MOSFET on InGaAs. J Comput Electron, 2014, 13:155 doi: 10.1007/s10825-013-0493-4
[31]
ATLAS user's manual: device simulation software, Silvaco Int. , Santa Clara, CA 2010
Fig. 1.  (Color online) The cross-sectional view of (a) conventional and (b) proposed structure.

Fig. 2.  (Color online) Output characteristics of the planar and TGMC-LDMOS.

Fig. 3.  (Color online) Current flow lines in (a) conventional and (b) TGMC-LDMOS structures.

Fig. 4.  (Color online) On-resistance variation with gate bias for the planar and TGMC-LDMOS.

Fig. 5.  (Color online) Transfer and transconductance curves for the planar and TGMC-LDMOS.

Fig. 6.  (Color online) Variation of short circuit current gain and unilateral power gain of the conventional and TGMC-LDMOS.

Fig. 7.  (Color online) Variation of capacitances with drain bias for the conventional and TGMC-LDMOS.

Fig. 8.  (Color online) $V_{\mathrm{br}}$ and $f_{\mathrm{T}}$ as a function of drift region doping ($N_{\mathrm{d}})$ for the TGMC-LDMOS.

Fig. 9.  (Color online) Effect of trench depth (t) on the $V_{\mathrm{br}}$ and $f_{\mathrm{T}}$ of the TGMC-LDMOS.

Fig. 10.  (Color online) Effect of epitaxial layer ($t_{\mathrm{epi}})$ on the $V_{\mathrm{br}}$ and $f_{\mathrm{T}}$ of the TGMC-LDMOS.

Table 1.   The device structural parameters used in this study.

DownLoad: CSV
[1]
Darabi H. Radio frequency integrated circuits and systems. Cambridge University Press, 2015
[2]
Erlbacher T. Lateral power transistors in integrated circuits. Springer Int Pub, 2014
[3]
Baliga B J. Silicon RF power MOSFETs. Singapore: World Scientific, 2005
[4]
Orouji A A, Pak A. Numerical simulation of lateral diffused metal oxide semiconductor field effect transistors:a novel technique for electric field control to improve breakdown voltage. Mater Sci Semi Process, 2015, 34:230 doi: 10.1016/j.mssp.2015.02.027
[5]
Sandeep S, Komaragiri R. Drift region optimization by double epitaxial layer in low and medium power rated silicon power MOSFETs. J Mater Sci Mater Electron, 2015, 26:230 doi: 10.1007/s10856-015-5561-9
[6]
Punetha M, Singh Y. A 100 V high-performance SOI trench LDMOS with low cell pitch. J Electron Mater, 2015, 10:3388 doi: 10.1007/s11664-015-3834-1
[7]
Singh Y, Punetha M. A lateral trench dual gate power MOSFET on thin SOI for improved performance. J Solid State Sci Tech, 2013, 2:Q113 doi: 10.1149/2.021307jss
[8]
Singh Y, Rawat R S. High figure-of-merit SOI power LDMOS for power integrated circuits. Eng Sci Tech Int J, 2015, 18:141 doi: 10.1016/j.jestch.2014.10.004
[9]
Hu Y, Wang G, Chang S, et al. Effect of silicon window polarity on partial-SOI LDMOSFETs. Micro Nano Lett, 2012, 7:628 doi: 10.1049/mnl.2012.0351
[10]
Du W, Lyu X, Chen X. An LDMOS with large SOA and low specific on-resistance. J Semicond, 2016, 37:054006 doi: 10.1088/1674-4926/37/5/054006
[11]
Xu Q, Luo X, Zhou K, et al. Ultralow specific on-resistance high voltage trench SOI LDMOS with enhanced RESURF effect. J Semicond, 2015, 36(2):024010 doi: 10.1088/1674-4926/36/2/024010
[12]
Fan Y, Luo X, Zhou K, et al. An L-shaped low on-resistance current path SOI LDMOS with dielectric field enhancement. J Semicond, 2014, 35(3):034011 doi: 10.1088/1674-4926/35/3/034011
[13]
Luo X, Wang X, Hu G, et al. Experimental and theoretical study of an improved breakdown voltage SOI LDMOS with a reduced cell pitch. J Semicond, 2014, 35(2):024007 doi: 10.1088/1674-4926/35/2/024007
[14]
Ge R, Luo X, Jiang Y, et al. A low on-resistance SOI LDMOS using a trench gate and a recessed drain. J Semicond, 2012, 33(7):074005 doi: 10.1088/1674-4926/33/7/074005
[15]
Hu X, Zhang B, Luo X, et al. A new high voltage SOI LDMOS with triple RESURF structure. J Semicond, 2011, 32(7):074006 doi: 10.1088/1674-4926/32/7/074006
[16]
Payal M, Singh Y. A multi-channel trench-gate (MCTG) RF LDMOS on SOI. IETE Tech Rev, 2016:1 doi: 10.1080/02564602.2016.1166993
[17]
Yu T, Luo L. An RF LDMOS with excellent efficiency and ruggedness based on a modified CMOS process. J Semicond, 2013, 34(9):094007 doi: 10.1088/1674-4926/34/9/094007
[18]
Punetha M, Singh Y. SOI dual-gate trench LDMOSFET for RF integrated power amplifiers. IETE Tech Rev, 2016:1 doi: 10.1080/02564602.2016.1199978?journalCode=titr20
[19]
Punetha M, Singh Y. Dual-channel trench LDMOS on SOI for RF power amplifier applications. J Comput Electron, 2015, 15:639
[20]
Chen K M, Huang G W, Chen B Y, et al. LDMOS transistor high-frequency performance enhancements by strain. IEEE Electron Device Lett, 2012, 33:471 doi: 10.1109/LED.2011.2182494
[21]
Chen K M, Chen B Y, Chiu C S, et al. Performance improvement in RF LDMOS transistors using wider drain contact. IEEE Electron Device Lett, 2013, 34:1085 doi: 10.1109/LED.2013.2272937
[22]
Yang R, Li J F, Qian H, et al. A short-channel SOI RF power LDMOS technology with TiSi2 salicide on dual sidewalls with cutoff frequency fT 19.3 GHz. IEEE Electron Device Lett, 2006, 27:917 doi: 10.1109/LED.2006.883561
[23]
Seoane N, Garcia-Loureiro A J, Kalna K, et al. Random dopant related variability in the 30 nm gate length In0.75Ga0.25As implant free MOSFET. J Comput Electron, 2008, 7:159 doi: 10.1007/s10825-008-0233-3
[24]
Adhikari M S, Singh Y. High-performance dual-channel InGaAs MOSFET for small signal RF applications. Electron Lett, 2015, 51:1203 doi: 10.1049/el.2015.0980
[25]
Dehzangi A, Wee M F M R, Wichmann N, et al. Threshold voltage study of scaled self-aligned In0.53Ga0.47As metal oxide semiconductor field effect transistor for different source/drain doping concentrations. Micro Nano Lett, 2014, 9:181
[26]
Zhou J H, Chang H D, Zhang X F, et al. Fabrication of a novel RF switch device with high performance using In0.4Ga0.6As MOSFET technology. J Semicond, 2016, 37:024005 doi: 10.1088/1674-4926/37/2/024005
[27]
Steighner J B, Yuan J S, Liu Y. Simulation and analysis of InGaAs power MOSFET performances and reliability. IEEE Trans Electron Device, 2011, 58:180 doi: 10.1109/TED.2010.2089460
[28]
Singh Y, Badiyari M. Performance optimization of InGaAs power LDMOSFET. Microelectron J, 2015, 5:404 http://www.sciencedirect.com/science/article/pii/S0026269215000439
[29]
Adhikari M S, Singh Y. High performance DCTG-LDMOS on InGaAs for RF power amplifier applications. Mater Sci Semi Process, 2015, 40:861 doi: 10.1016/j.mssp.2015.07.067
[30]
Singh Y, Adhikari M S. Performance evaluation of a lateral trench-gate power MOSFET on InGaAs. J Comput Electron, 2014, 13:155 doi: 10.1007/s10825-013-0493-4
[31]
ATLAS user's manual: device simulation software, Silvaco Int. , Santa Clara, CA 2010
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3222 Times PDF downloads: 24 Times Cited by: 0 Times

    History

    Received: 18 November 2016 Revised: 16 February 2017 Online: Published: 01 September 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      M. Payal, Y. Singh. A new RF trench-gate multi-channel laterally-diffused MOSFET on InGaAs[J]. Journal of Semiconductors, 2017, 38(9): 094001. doi: 10.1088/1674-4926/38/9/094001 M. Payal, Y. Singh. A new RF trench-gate multi-channel laterally-diffused MOSFET on InGaAs[J]. J. Semicond., 2017, 38(9): 094001. doi: 10.1088/1674-4926/38/9/094001.Export: BibTex EndNote
      Citation:
      M. Payal, Y. Singh. A new RF trench-gate multi-channel laterally-diffused MOSFET on InGaAs[J]. Journal of Semiconductors, 2017, 38(9): 094001. doi: 10.1088/1674-4926/38/9/094001

      M. Payal, Y. Singh. A new RF trench-gate multi-channel laterally-diffused MOSFET on InGaAs[J]. J. Semicond., 2017, 38(9): 094001. doi: 10.1088/1674-4926/38/9/094001.
      Export: BibTex EndNote

      A new RF trench-gate multi-channel laterally-diffused MOSFET on InGaAs

      doi: 10.1088/1674-4926/38/9/094001
      More Information
      • Corresponding author: Y. Singh, Email: om_ysingh@yahoo.co.in
      • Received Date: 2016-11-18
      • Revised Date: 2017-02-16
      • Published Date: 2017-09-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return