SEMICONDUCTOR DEVICES

Improved interfacial properties of GaAs MOS capacitor with NH3-plasma-treated ZnON as interfacial passivation layer

Jingkang Gong, Jingping Xu, Lu Liu, Hanhan Lu, Xiaoyu Liu and Yaoyao Feng

+ Author Affiliations

 Corresponding author: Jingping Xu Email: jpxu@mail.hust.edu.cn

PDF

Abstract: The GaAs MOS capacitor was fabricated with HfTiON as high-k gate dielectric and NH3-plasma-treated ZnON as interfacial passivation layer (IPL), and its interfacial and electrical properties are investigated compared to its counterparts with ZnON IPL but no NH3-plasma treatment and without ZnON IPL and no plasma treatment. Experimental results show that low interface-state density near midgap (1.17×1012 cm-2eV-1) and small gate leakage current density have been achieved for the GaAs MOS device with the stacked gate dielectric of HfTiON/ZnON plus NH3-plasma treatment. These improvements could be ascribed to the fact that the ZnON IPL can effectively block in-diffusion of oxygen atoms and out-diffusion of Ga and As atoms, and the NH3-plasma treatment can provide not only N atoms but also H atoms and NH radicals, which is greatly beneficial to removal of defective Ga/As oxides and As-As band, giving a high-quality ZnON/GaAs interface.

Key words: GaAs MOSZnON interfacial passivation layerNH3-plasma treatment



[1]
He G, Chen X, Sun Z. Interface engineering and chemistry of Hf-based high-k dielectrics on Ⅲ-V substrates. Surf Sci Rep, 2013, 68(1):68 doi: 10.1016/j.surfrep.2013.01.002
[2]
Suzuki R, Taoka N, Yokoyama M, et al. 1-nm-capacitance-equivalent-thickness HfO2/Al2O3/InGaAs metal-oxide-semiconductor structure with low interface trap density and low gate leakage current density. Appl Phys Lett, 2012, 100(13):132906 doi: 10.1063/1.3698095
[3]
Das P S, Biswas A. Investigations on electrical characteristics and reliability properties of MOS capacitors using HfAlOx on n-GaAs substrates. Microelectron Reliab, 2012, 52(1):112 doi: 10.1016/j.microrel.2011.08.005
[4]
Kundu S, Roy S, Banerji P, et al. Studies on Al/ZrO2/GaAs metal-oxide-semiconductor capacitors and determination of its electrical parameters in the frequency range of 10 kHz-1 MHz. J Vac Sci Technol B, 2011, 29(3):1203 http://independent.academia.edu/souvikkundu1
[5]
Ji F, Xu J P, Liu J G, et al. Improved interface properties of Ge metal-oxide-semiconductor capacitor with TaTiO gate dielectric by using in situ TaON passivation interlayer. Appl Phys Lett, 2011, 98(18):182901 doi: 10.1063/1.3581891
[6]
Passlack M, Medendorp N, Gregory R, et al. Role of Ga2O3 template thickness and gadolinium mole fraction in GdxGa0.4-xO0.6/Ga2O3 gate dielectric stacks on GaAs. Appl Phys Lett, 2003, 83(25):5262 doi: 10.1063/1.1635068
[7]
Wang L S, Xu J P, Zhu S Y, et al. Improved interfacial and electrical properties of GaAs metal-oxide-semiconductor capacitors with HfTiON as gate dielectric and TaON as passivation interlayer. Appl Phys Lett, 2013, 103(9):112901 http://hub.hku.hk/bitstream/10722/202921/1/Content.pdf?accept=1
[8]
Shahrjerdi D, Oye M M, Holmes A L Jr, et al. Unpinned metal gate/high-k GaAs capacitors:fabrication and characterization. Appl Phys Lett, 2006, 89(4):49 doi: 10.1063/1.2234837?journalCode=apl
[9]
Liu C, Zhang Y M, Zhang Y M, et al. Interfacial characteristics of Al/Al2O3/ZnO/n-GaAs MOS capacitor. Chin Phys B, 2013, 22(7):406 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgwl201307070&dbname=CJFD&dbcode=CJFQ
[10]
Kundu S, Shripathi T, Banerji P. Interface engineering with an MOCVD grown ZnO interface passivation layer for ZrO2-GaAs metal-oxide-semiconductor devices. Solid State Commun, 2011, 151(24):1881 doi: 10.1016/j.ssc.2011.09.033
[11]
Lee S, Nathan A, Ye Y, et al. Localized tail states and electron mobility in amorphous ZnON thin film transistors. Sci Rep, 2015, 5:13467 doi: 10.1038/srep13467
[12]
Ghosh C K, Malkhandi S, Mitra M K, et al. Effect of Ni doping on the dielectric constant of ZnO and its frequency dependent exchange interaction. J Phys D, 2008, 41(41):245113 http://shodhganga.inflibnet.ac.in/bitstream/10603/42983/14/14chapter7.pdf
[13]
Lu H, Xu J P, Liu L, et al. Improved interfacial quality of GaAs metal-oxide-semiconductor device with NH3-plasma treated yittrium-oxynitride as interfacial passivation layer. Microelectron Reliab, 2016, 56:17 https://dialnet.unirioja.es/servlet/articulo?codigo=5305745
[14]
Yasui K, Arayama T, Okutani S, et al. Generation of ammonia plasma using a helical antenna and nitridation of GaAs surface. Appl Surf Sci, 2003, 212(2):619 http://cat.inist.fr/?aModele=exportN&cpsidt=14887882
[15]
O'Connor E, Djara V, Monaghan S, et al. Capacitance-voltage and interface state density characteristics of GaAs and InGaAs MOS capacitors incorporating a PECVD SiN dielectric. ES Trans, 2011, 415:35 https://www.mendeley.com/research-papers/capacitancevoltage-interface-state-density-characteristics-gaas-ingaas-mos-capacitors-incorporating/
[16]
Losurdo M, Capezzuto P, Bruno G, et al. N2-H2 remote plasma nitridation for GaAs surface passivation. Appl Phys Lett, 2002, 81(1):16 doi: 10.1063/1.1490414
[17]
Frank M M, Wilk G D, Starodub D, et al. HfO2 and Al2O3 gate dielectrics on GaAs grown by atomic layer deposition. Appl Phys Lett, 2005, 86(15):87 http://www.fujitsu.com/global/documents/about/resources/publications/fstj/archives/vol39-1/paper12.pdf
[18]
Lu H L, Sun L, Ding S J, et al. Characterization of atomic-layer-deposited Al2O3/GaAs interface improved by NH3 plasma pretreatment. Appl Phys Lett, 2006, 89(15):1897 doi: 10.1063/1.2363145?journalCode=apl
[19]
Yang T, Xuan Y, Zemlyanov D, et al. Interface studies of GaAs metal-oxide-semiconductor structures using atomic-layer-deposited HfO2/Al2O3 nanolaminate gate dielectric. Appl Phys Lett, 2007, 91(14):1099 http://ieeexplore.ieee.org/document/4829101/
[20]
Wang L S, Xu J P, Liu L, et al. Plasma-nitrided Ga2O3(Gd2O3) as interfacial passivation layer for InGaAs metal-oxide-semiconductor capacitor with HfTiON gate dielectric. IEEE Trans Electron Devices, 2015, 62(4):1235 doi: 10.1109/TED.2015.2396972
[21]
Terman L M. An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes. Solid State Electron, 1962, 5:285 doi: 10.1016/0038-1101(62)90111-9
[22]
Li C C, Chang-Liao K S, Fu C H, et al. Improved electrical characteristics high-k gated MOS devices with in-situ remote plasma treatment in atomic layer deposition. Microelectron Eng, 2013, 109(6):64 http://www.sciencedirect.com/science/article/pii/S0167931713002773
[23]
Dasa T, Mahata C, Sutradharb G, et al. Characterization of Ti-based high-k gate dielectrics on GaAs. ECS Trans, 201135:325 http://ma.ecsdl.org/content/MA2011-01/18/1209.short
[24]
Crupi F, Ciofi C, Germanó A, et al. On the role of interface states in low-voltage leakage currents of metal-oxide-semiconductor structures. Appl Phys Lett, 2002, 80(24):4597 doi: 10.1063/1.1487450
[25]
Xu H X, Xu J P. Electrical properties of Ge metal-oxide-semiconductor capacitors with high-k La2O3 gate dielectric incorporated by N or/and Ti. J Semicond, 2016, 37(6):77 http://d.wanfangdata.com.cn/Periodical/bdtxb201606011
[26]
Wang L S, Liu L, Xu J P, et al. Electrical properties of HfTiON gate-dielectric GaAs metal-oxide-semiconductor capacitor with AlON as interlayer. IEEE Trans Electron Devices, 2014, 61:1 doi: 10.1109/TED.2013.2292251
[27]
Lee S, Nathan A, Ye Y, et al. Localized tail states and electron mobility in amorphous ZnON thin film transistors. Sci Rep, 2015, 5:13467 doi: 10.1038/srep13467
[28]
Gonbeau D, Guimon C, Pfister-Guillouzo G, et al. XPS study of thin films of titanium oxysulfides. Surf Sci, 1991, 254(1-3):81 doi: 10.1016/0039-6028(91)90640-E
[29]
Flina B J McIntyre N S. Studies of the UV/ozone oxidation of GaAs using angle-resolved X-ray photoelectron spectroscopy. Surf Interface Anal, 1990, 15:19 doi: 10.1002/(ISSN)1096-9918
[30]
Sugahara H, Oshima M, Oigawa H, et al. Synchrotron radiation photoemission analysis for (NH4)2Sx-treated GaAs. J Appl Phys, 1991, 69(8):4349 doi: 10.1063/1.348380
[31]
Liu C W, Xu J P, Liu L, et al. High-gate dielectric GaAs MOS device with LaON as interlayer and NH-plasma surface pretreatment. Chin Phys B, 2015, 24:494 http://cpb.iphy.ac.cn/fileup/PDF/2015-12-127304.pdf
[32]
Ould-Metidji Y, Bideux L, Baca D, et al. Nitridation of GaAs(100) substrates and Ga/GaAs systems studied by XPS spectroscopy. Appl Surf Sci, 2003, 212(2):614 http://www.sciencedirect.com/science/article/pii/S0169433203003957
[33]
Zhu S Y, Xu J P, Wang L S, et al. Comparison of interfacial and electrical properties between Al2O3 and ZnO as interface passivation layer of GaAs MOS device with HfTiO gate dielectric. J Semicond, 2015, 36(3):74 doi: 10.1021/am506351u?src=recsys
[34]
Wu Y C, Chang E Y, Lin Y C, et al. Study of the inversion behaviors of Al2O3/InxGa1-xAs metal-oxide-semiconductor capacitors with different In contents. Solid State Electron, 2010, 54(1):37 doi: 10.1016/j.sse.2009.09.033
[35]
Yan T, Zhang Y M, Lü H L, et al. Temperature dependent interfacial and electrical characteristics during atomic layer deposition and annealing of HfO2 films in p-GaAs metal-oxide-semiconductor capacitors. J Semicond, 2015, 36(12):124003 doi: 10.1088/1674-4926/36/12/124003
[36]
Pal S, Bose D N. Fabrication and characterization of GaAs MIS devices with N-rich PEVCD SiN dielectric. Appl Surf Sci, 2001, 181:179 doi: 10.1016/S0169-4332(01)00196-9
[37]
Marchiori C, Webb D J, Rossel C, et al. H plasma cleaning and a-Si passivation of GaAs for surface channel device applications. J Appl Phys, 2009, 106(11):1245 doi: 10.1063/1.3260251?journalCode=jap
Fig. 1.  Normalized HF (1 MHz) C-V curve of the three samples

Fig. 2.  Frequency dispersion of C-V curves for all the samples, measured from 50 kHz to 1 MHz

Fig. 3.  $ J_{\rm g}$ versus $E_{\rm g}$ characteristics of three GaAs MOS capacitors

Fig. 4.  XPS spectra of Zn 2p and Zn 3d (inset) for NH$_{\rm \mathrm{3}}$-ZnON sample and ZnON sample

Fig. 5.  XPS spectrum of Ti 2p for three samples

Fig. 6.  XPS spectrum of Ga 3d for (a) NH$_{\rm \mathrm{3}}$-ZnON sample, (b) ZnON sample, and (c) control sample

Fig. 7.  XPS spectrum of As 3d for (a) NH$_{\rm \mathrm{3}}$-ZnON sample, (b) ZnON sample, and (c) control sample

Table 1.   Electrical and physical parameters of three samples extracted from their HF C-V curves

[1]
He G, Chen X, Sun Z. Interface engineering and chemistry of Hf-based high-k dielectrics on Ⅲ-V substrates. Surf Sci Rep, 2013, 68(1):68 doi: 10.1016/j.surfrep.2013.01.002
[2]
Suzuki R, Taoka N, Yokoyama M, et al. 1-nm-capacitance-equivalent-thickness HfO2/Al2O3/InGaAs metal-oxide-semiconductor structure with low interface trap density and low gate leakage current density. Appl Phys Lett, 2012, 100(13):132906 doi: 10.1063/1.3698095
[3]
Das P S, Biswas A. Investigations on electrical characteristics and reliability properties of MOS capacitors using HfAlOx on n-GaAs substrates. Microelectron Reliab, 2012, 52(1):112 doi: 10.1016/j.microrel.2011.08.005
[4]
Kundu S, Roy S, Banerji P, et al. Studies on Al/ZrO2/GaAs metal-oxide-semiconductor capacitors and determination of its electrical parameters in the frequency range of 10 kHz-1 MHz. J Vac Sci Technol B, 2011, 29(3):1203 http://independent.academia.edu/souvikkundu1
[5]
Ji F, Xu J P, Liu J G, et al. Improved interface properties of Ge metal-oxide-semiconductor capacitor with TaTiO gate dielectric by using in situ TaON passivation interlayer. Appl Phys Lett, 2011, 98(18):182901 doi: 10.1063/1.3581891
[6]
Passlack M, Medendorp N, Gregory R, et al. Role of Ga2O3 template thickness and gadolinium mole fraction in GdxGa0.4-xO0.6/Ga2O3 gate dielectric stacks on GaAs. Appl Phys Lett, 2003, 83(25):5262 doi: 10.1063/1.1635068
[7]
Wang L S, Xu J P, Zhu S Y, et al. Improved interfacial and electrical properties of GaAs metal-oxide-semiconductor capacitors with HfTiON as gate dielectric and TaON as passivation interlayer. Appl Phys Lett, 2013, 103(9):112901 http://hub.hku.hk/bitstream/10722/202921/1/Content.pdf?accept=1
[8]
Shahrjerdi D, Oye M M, Holmes A L Jr, et al. Unpinned metal gate/high-k GaAs capacitors:fabrication and characterization. Appl Phys Lett, 2006, 89(4):49 doi: 10.1063/1.2234837?journalCode=apl
[9]
Liu C, Zhang Y M, Zhang Y M, et al. Interfacial characteristics of Al/Al2O3/ZnO/n-GaAs MOS capacitor. Chin Phys B, 2013, 22(7):406 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgwl201307070&dbname=CJFD&dbcode=CJFQ
[10]
Kundu S, Shripathi T, Banerji P. Interface engineering with an MOCVD grown ZnO interface passivation layer for ZrO2-GaAs metal-oxide-semiconductor devices. Solid State Commun, 2011, 151(24):1881 doi: 10.1016/j.ssc.2011.09.033
[11]
Lee S, Nathan A, Ye Y, et al. Localized tail states and electron mobility in amorphous ZnON thin film transistors. Sci Rep, 2015, 5:13467 doi: 10.1038/srep13467
[12]
Ghosh C K, Malkhandi S, Mitra M K, et al. Effect of Ni doping on the dielectric constant of ZnO and its frequency dependent exchange interaction. J Phys D, 2008, 41(41):245113 http://shodhganga.inflibnet.ac.in/bitstream/10603/42983/14/14chapter7.pdf
[13]
Lu H, Xu J P, Liu L, et al. Improved interfacial quality of GaAs metal-oxide-semiconductor device with NH3-plasma treated yittrium-oxynitride as interfacial passivation layer. Microelectron Reliab, 2016, 56:17 https://dialnet.unirioja.es/servlet/articulo?codigo=5305745
[14]
Yasui K, Arayama T, Okutani S, et al. Generation of ammonia plasma using a helical antenna and nitridation of GaAs surface. Appl Surf Sci, 2003, 212(2):619 http://cat.inist.fr/?aModele=exportN&cpsidt=14887882
[15]
O'Connor E, Djara V, Monaghan S, et al. Capacitance-voltage and interface state density characteristics of GaAs and InGaAs MOS capacitors incorporating a PECVD SiN dielectric. ES Trans, 2011, 415:35 https://www.mendeley.com/research-papers/capacitancevoltage-interface-state-density-characteristics-gaas-ingaas-mos-capacitors-incorporating/
[16]
Losurdo M, Capezzuto P, Bruno G, et al. N2-H2 remote plasma nitridation for GaAs surface passivation. Appl Phys Lett, 2002, 81(1):16 doi: 10.1063/1.1490414
[17]
Frank M M, Wilk G D, Starodub D, et al. HfO2 and Al2O3 gate dielectrics on GaAs grown by atomic layer deposition. Appl Phys Lett, 2005, 86(15):87 http://www.fujitsu.com/global/documents/about/resources/publications/fstj/archives/vol39-1/paper12.pdf
[18]
Lu H L, Sun L, Ding S J, et al. Characterization of atomic-layer-deposited Al2O3/GaAs interface improved by NH3 plasma pretreatment. Appl Phys Lett, 2006, 89(15):1897 doi: 10.1063/1.2363145?journalCode=apl
[19]
Yang T, Xuan Y, Zemlyanov D, et al. Interface studies of GaAs metal-oxide-semiconductor structures using atomic-layer-deposited HfO2/Al2O3 nanolaminate gate dielectric. Appl Phys Lett, 2007, 91(14):1099 http://ieeexplore.ieee.org/document/4829101/
[20]
Wang L S, Xu J P, Liu L, et al. Plasma-nitrided Ga2O3(Gd2O3) as interfacial passivation layer for InGaAs metal-oxide-semiconductor capacitor with HfTiON gate dielectric. IEEE Trans Electron Devices, 2015, 62(4):1235 doi: 10.1109/TED.2015.2396972
[21]
Terman L M. An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes. Solid State Electron, 1962, 5:285 doi: 10.1016/0038-1101(62)90111-9
[22]
Li C C, Chang-Liao K S, Fu C H, et al. Improved electrical characteristics high-k gated MOS devices with in-situ remote plasma treatment in atomic layer deposition. Microelectron Eng, 2013, 109(6):64 http://www.sciencedirect.com/science/article/pii/S0167931713002773
[23]
Dasa T, Mahata C, Sutradharb G, et al. Characterization of Ti-based high-k gate dielectrics on GaAs. ECS Trans, 201135:325 http://ma.ecsdl.org/content/MA2011-01/18/1209.short
[24]
Crupi F, Ciofi C, Germanó A, et al. On the role of interface states in low-voltage leakage currents of metal-oxide-semiconductor structures. Appl Phys Lett, 2002, 80(24):4597 doi: 10.1063/1.1487450
[25]
Xu H X, Xu J P. Electrical properties of Ge metal-oxide-semiconductor capacitors with high-k La2O3 gate dielectric incorporated by N or/and Ti. J Semicond, 2016, 37(6):77 http://d.wanfangdata.com.cn/Periodical/bdtxb201606011
[26]
Wang L S, Liu L, Xu J P, et al. Electrical properties of HfTiON gate-dielectric GaAs metal-oxide-semiconductor capacitor with AlON as interlayer. IEEE Trans Electron Devices, 2014, 61:1 doi: 10.1109/TED.2013.2292251
[27]
Lee S, Nathan A, Ye Y, et al. Localized tail states and electron mobility in amorphous ZnON thin film transistors. Sci Rep, 2015, 5:13467 doi: 10.1038/srep13467
[28]
Gonbeau D, Guimon C, Pfister-Guillouzo G, et al. XPS study of thin films of titanium oxysulfides. Surf Sci, 1991, 254(1-3):81 doi: 10.1016/0039-6028(91)90640-E
[29]
Flina B J McIntyre N S. Studies of the UV/ozone oxidation of GaAs using angle-resolved X-ray photoelectron spectroscopy. Surf Interface Anal, 1990, 15:19 doi: 10.1002/(ISSN)1096-9918
[30]
Sugahara H, Oshima M, Oigawa H, et al. Synchrotron radiation photoemission analysis for (NH4)2Sx-treated GaAs. J Appl Phys, 1991, 69(8):4349 doi: 10.1063/1.348380
[31]
Liu C W, Xu J P, Liu L, et al. High-gate dielectric GaAs MOS device with LaON as interlayer and NH-plasma surface pretreatment. Chin Phys B, 2015, 24:494 http://cpb.iphy.ac.cn/fileup/PDF/2015-12-127304.pdf
[32]
Ould-Metidji Y, Bideux L, Baca D, et al. Nitridation of GaAs(100) substrates and Ga/GaAs systems studied by XPS spectroscopy. Appl Surf Sci, 2003, 212(2):614 http://www.sciencedirect.com/science/article/pii/S0169433203003957
[33]
Zhu S Y, Xu J P, Wang L S, et al. Comparison of interfacial and electrical properties between Al2O3 and ZnO as interface passivation layer of GaAs MOS device with HfTiO gate dielectric. J Semicond, 2015, 36(3):74 doi: 10.1021/am506351u?src=recsys
[34]
Wu Y C, Chang E Y, Lin Y C, et al. Study of the inversion behaviors of Al2O3/InxGa1-xAs metal-oxide-semiconductor capacitors with different In contents. Solid State Electron, 2010, 54(1):37 doi: 10.1016/j.sse.2009.09.033
[35]
Yan T, Zhang Y M, Lü H L, et al. Temperature dependent interfacial and electrical characteristics during atomic layer deposition and annealing of HfO2 films in p-GaAs metal-oxide-semiconductor capacitors. J Semicond, 2015, 36(12):124003 doi: 10.1088/1674-4926/36/12/124003
[36]
Pal S, Bose D N. Fabrication and characterization of GaAs MIS devices with N-rich PEVCD SiN dielectric. Appl Surf Sci, 2001, 181:179 doi: 10.1016/S0169-4332(01)00196-9
[37]
Marchiori C, Webb D J, Rossel C, et al. H plasma cleaning and a-Si passivation of GaAs for surface channel device applications. J Appl Phys, 2009, 106(11):1245 doi: 10.1063/1.3260251?journalCode=jap
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2878 Times PDF downloads: 15 Times Cited by: 0 Times

    History

    Received: 20 October 2016 Revised: 17 March 2017 Online: Published: 01 September 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jingkang Gong, Jingping Xu, Lu Liu, Hanhan Lu, Xiaoyu Liu, Yaoyao Feng. Improved interfacial properties of GaAs MOS capacitor with NH3-plasma-treated ZnON as interfacial passivation layer[J]. Journal of Semiconductors, 2017, 38(9): 094004. doi: 10.1088/1674-4926/38/9/094004 J K Gong, J P Xu, L Liu, H H Lu, X Y Liu, Y Y Feng. Improved interfacial properties of GaAs MOS capacitor with NH3-plasma-treated ZnON as interfacial passivation layer[J]. J. Semicond., 2017, 38(9): 094004. doi: 10.1088/1674-4926/38/9/094004.Export: BibTex EndNote
      Citation:
      Jingkang Gong, Jingping Xu, Lu Liu, Hanhan Lu, Xiaoyu Liu, Yaoyao Feng. Improved interfacial properties of GaAs MOS capacitor with NH3-plasma-treated ZnON as interfacial passivation layer[J]. Journal of Semiconductors, 2017, 38(9): 094004. doi: 10.1088/1674-4926/38/9/094004

      J K Gong, J P Xu, L Liu, H H Lu, X Y Liu, Y Y Feng. Improved interfacial properties of GaAs MOS capacitor with NH3-plasma-treated ZnON as interfacial passivation layer[J]. J. Semicond., 2017, 38(9): 094004. doi: 10.1088/1674-4926/38/9/094004.
      Export: BibTex EndNote

      Improved interfacial properties of GaAs MOS capacitor with NH3-plasma-treated ZnON as interfacial passivation layer

      doi: 10.1088/1674-4926/38/9/094004
      Funds:

      the National Natural Science Foundation of China Nos.61404055

      Project supported by the National Natural Science Foundation of China (Nos.61176100, 61274112, 61404055)

      the National Natural Science Foundation of China Nos.61274112

      the National Natural Science Foundation of China Nos.61176100

      More Information
      • Corresponding author: Jingping Xu Email: jpxu@mail.hust.edu.cn
      • Received Date: 2016-10-20
      • Revised Date: 2017-03-17
      • Published Date: 2017-09-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return