Special Issue on Flexible and Wearable Electronics: from Materials to Applications

Flexible magnetic thin films and devices

Ping Sheng1, 2, 3, Baomin Wang1, 2, and Runwei Li1, 2,

+ Author Affiliations

 Corresponding author: Baomin Wang, wangbaomin@nimte.ac.cn; Runwei Li, runweili@nimte.ac.cn

PDF

Turn off MathJax

Abstract: Flexible electronic devices are highly attractive for a variety of applications such as flexible circuit boards, solar cells, paper-like displays, and sensitive skin, due to their stretchable, biocompatible, light-weight, portable, and low cost properties. Due to magnetic devices being important parts of electronic devices, it is essential to study the magnetic properties of magnetic thin films and devices fabricated on flexible substrates. In this review, we mainly introduce the recent progress in flexible magnetic thin films and devices, including the study on the stress-dependent magnetic properties of magnetic thin films and devices, and controlling the properties of flexible magnetic films by stress-related multi-fields, and the design and fabrication of flexible magnetic devices.

Key words: flexiblestrain/stressmagnetic anisotropymagnetic thin films/magnetic devices



[1]
Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 2004, 428(6986): 911 doi: 10.1038/nature02498
[2]
Someya T, Kato Y, Sekitani T, et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci USA, 2005, 102(35): 12321 doi: 10.1073/pnas.0502392102
[3]
Putz B, Schoeppner R L, Glushko O, et al. Improved electro-mechanical performance of gold films on polyimide without adhesion layers. Sci Mater, 2015, 102: 23
[4]
Makarov D, Melzer M, Karnaushenko D, et al. Shapeable magnetoelectronics. Appl Phys R, 2016, 3(1): 011101 doi: 10.1063/1.4938497
[5]
Tao L, Wang D, Jiang S, et al. Fabrication techniques and applications of flexible graphene-based electronic devices. J Semicond, 2016, 37(4): 041001 doi: 10.1088/1674-4926/37/4/041001
[6]
Sunkook K, Hyuk-Jun K, Sunghun L, et al. Low-power flexible organic light-emitting diode display device. Adv Mater, 2011, 23(31): 3511 doi: 10.1002/adma.201101066
[7]
Yagi I, Hirai N, Miyamoto Y, et al. A flexible full-color AMOLED display driven by OTFTs. J Soc Inf Display, 2008, 16(1): 15 doi: 10.1889/1.2835023
[8]
Gaikwad A M, Steingart D A, Nga Ng T, et al. A flexible high potential printed battery for powering printed electronics. Appl Phys Lett, 2013, 102: 233302 doi: 10.1063/1.4810974
[9]
Gingerich M D, Akhmechet R, Cogan S F, et al. A microfabricated, combination flexible circuit/electrode array for a subretinal prosthesis. Invest Ophthalmol Vis Sci, 2012, 53: 535
[10]
Barraud C, Deranlot C, Seneor P, et al. Magnetoresistance in magnetic tunnel junctions grown on flexible organic substrates. Appl Phys Lett, 2010, 96(7): 911
[11]
Melzer M, Lin G, Makarov D, et al. Stretchable spin valves on elastomer membranes by predetermined periodic fracture and random wrinkling. Adv Mater, 2012, 24(48): 6468 doi: 10.1002/adma.v24.48
[12]
Vemulkar T, Mansell R, Fernández-Pacheco A, et al. toward flexible spintronics: perpendicularly magnetized synthetic antiferromagnetic thin films and nanowires on polyimide substrates. Adv Funct Mater, 2016, 26(26): 4704 doi: 10.1002/adfm.v26.26
[13]
Kim J, Hwang J, Song K, et al. Ultra-thin flexible GaAs photovoltaics in vertical forms printed on metal surfaces without interlayer adhesives. Appl Phys Lett, 2016, 108(25): 253101 doi: 10.1063/1.4954039
[14]
Rance W L, Burst J M, Meysing D M, et al. 14%-efficient flexible CdTe solar cells on ultra-thin glass substrates. Appl Phys Lett, 2014, 104(14): 827
[15]
Lim G H, Lee J, Kwon N, et al. Fabrication of flexible magnetic papers based on bacterial cellulose and barium hexaferrite with improved mechanical properties. Electr Mater Lett, 2016, 12(5): 574 doi: 10.1007/s13391-016-6179-x
[16]
Chen Y F, Mei Y, Kaltofen R, et al. Towards flexible magnetoelectronics: buffer-enhanced and mechanically tunable GMR of Co/Cu multilayers on plastic substrates. Adv Mater, 2008, 20(17): 3224 doi: 10.1002/adma.v20:17
[17]
Pérez N, Melzer M, Makarov D, et al. High-performance giant magnetoresistive sensorics on flexible Si membranes. Appl Phys Lett, 2015, 106(15): 153501 doi: 10.1063/1.4918652
[18]
Dai G, Zhan Q, Liu Y, et al. Mechanically tunable magnetic properties of Fe81Ga19 films grown on flexible substrates. Appl Phys Lett, 2012, 100(12): 122407 doi: 10.1063/1.3696887
[19]
Dai G, Zhan Q, Yang H, et al. Controllable strain-induced uniaxial anisotropy of Fe81Ga19 films deposited on flexible bowed-substrates. J Appl Phys, 2013, 114(17): 173913 doi: 10.1063/1.4829670
[20]
Zhang X, Zhan Q, Dai G, et al. Effect of mechanical strain on magnetic properties of flexible exchange biased FeGa/IrMn heterostructures. Appl Phys Lett, 2013, 102(2): 022412 doi: 10.1063/1.4776661
[21]
Liu Y W, Zhan Q F, Li R W. Fabrication, properties, and applications of flexible magnetic films. Chin Phys B., 2013, 22(12): 127502 doi: 10.1088/1674-1056/22/12/127502
[22]
Tang Z, Wang B, Yang H, et al. Magneto-mechanical coupling effect in amorphous Co40Fe40B20 films grown on flexible substrates. Appl Phys Lett, 2014, 105(10): 103504 doi: 10.1063/1.4895628
[23]
Liu Y, Zhan Q, Wang B, et al. Modulation of magnetic anisotropy in flexible multiferroic FeGa/PVDF heterostructures under various strains. IEEE Trans Magn, 2015, 51(11): 2501404
[24]
Polisetty S, Echtenkamp W, Jones K, et al. Piezoelectric tuning of exchange bias in a BaTiO3/Co/CoO heterostructure. Phys Rev B, 2010, 82(13): 134419 doi: 10.1103/PhysRevB.82.134419
[25]
Liu L P, Zhan Q F , Xin R, et al. Effect of thermal deformation on giant magnetoresistance of flexible spin valves grown on polyvinylidene fluoride membranes. Chin Phys B, 2016, 25(7): 077307 doi: 10.1088/1674-1056/25/7/077307
[26]
Cao D, Wang Z, Pan L, et al. Controllable magnetic and magnetostrictive properties of FeGa films electrodeposited on curvature substrates. Appl Phys A, 2016, 122(11): 938 doi: 10.1007/s00339-016-0468-y
[27]
Asai R, Ota S, Namazu T, et al. Stress-induced large anisotropy field modulation in Ni films deposited on a flexible substrate. J Appl Phys, 2016, 120(8): 083906 doi: 10.1063/1.4961564
[28]
Kumar D, Singh S, Vishawakarma P, et al. Tailoring of in-plane magnetic anisotropy in polycrystalline cobalt thin films by external stress. J Magn Magn Mater, 2016, 418: 99 doi: 10.1016/j.jmmm.2016.03.072
[29]
Mouhamadou G, Pierpaolo L, Fatih Z, et al. Unambiguous magnetoelastic effect on residual anisotropy in thin films deposited on flexible substrates. EPL, 2016, 114(1): 17003 doi: 10.1209/0295-5075/114/17003
[30]
Zhang H, Li Y Y, Yang M Y, et al. Tuning the magnetic anisotropy of CoFeB grown on flexible substrates. Chin Phys B, 2015, 24(7): 077501 doi: 10.1088/1674-1056/24/7/077501
[31]
Koch R, Weber M, Thurmer K, et al. Magnetoelastic coupling of Fe at high stress investigated by means of epitaxial Fe(001) films. J Magn Magn Mater, 1996, 159(1/2): L11
[32]
Wu X W, Rzchowski M S, Wang H S, et al. Strain-induced magnetic properties of Pr0.67Sr0.33MnO3 thin films. Phys Rev B, 2000, 61(1): 501 doi: 10.1103/PhysRevB.61.501
[33]
Takagi H, Tsunashima S, Uchiyama S, et al. Stress-induced anisotropy in amorphous Gd–Fe and Tb–Fe sputtered films. J Appl Phys, 1979, 50(3): 1642
[34]
Sander D. The correlation between mechanical stress and magnetic anisotropy in ultrathin films. Rep Prog Phys, 1999, 62(5): 809 doi: 10.1088/0034-4885/62/5/204
[35]
Sander D, Enders A,Kirschner J. Stress and magnetic properties of surfaces and ultrathin films. J Magn Magn Mater, 1999, 200(1-3): 439 doi: 10.1016/S0304-8853(99)00310-8
[36]
Jung C U, Yamada H, Kawasaki M, et al. Magnetic anisotropy control of SrRuO3 films by tunable epitaxial strain. Appl Phys Lett, 2004, 84(14): 2590 doi: 10.1063/1.1695195
[37]
Yu G Q, Wang Z X, Abolfath-Beygi M, et al. Strain-induced modulation of perpendicular magnetic anisotropy in Ta/CoFeB/MgO structures investigated by ferromagnetic resonance. Appl Phys Lett, 2015, 106(7): 072402 doi: 10.1063/1.4907677
[38]
Zhang X, Zhan Q, Dai G, et al. Effect of buffer layer and external stress on magnetic properties of flexible FeGa films. J Appl Phys, 2013, 113(17): 17A901 doi: 10.1063/1.4793602
[39]
Huang W, Zhu J, Zeng H Z, et al. Strain induced magnetic anisotropy in highly epitaxial CoFe2O4 thin films. Appl Phys Lett, 2006, 89(26): 262506 doi: 10.1063/1.2424444
[40]
Thiele J U, Maat S,Fullerton E E. FeRh/FePt exchange spring films for thermally assisted magnetic recording media. Appl Phys Lett, 2003, 82(82): 2859
[41]
Phuoc N N, Chai G, Ong C K. Temperature-dependent dynamic magnetization of FeCoHf thin films fabricated by oblique deposition. J Appl Phys, 2012, 112(8): 83925 doi: 10.1063/1.4763361
[42]
Mcdaniel T. Ultimate limits to thermally assisted magnetic recording. J Phys: Conden Matt, 2005, 17(17): R315
[43]
Liu Y, Wang B, Zhan Q, et al. Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites. Sci Rep, 2014, 4(4): 6615
[44]
Lamy Y, Viala B. NiMn, IrMn, and NiO Exchange Coupled CoFe multilayers for microwave applications. IEEE Trans Magn, 2006, 42(10): 3332 doi: 10.1109/TMAG.2006.878871
[45]
Parkin S S P. Flexible giant magnetoresistance sensors. Appl Phys Lett, 1996, 69(20): 3092 doi: 10.1063/1.117315
[46]
Cui B, Song C, Wang G Y, et al. Strain engineering induced interfacial self-assembly and intrinsic exchange bias in a manganite perovskite film. Sci Rep, 2013, 3(6): 2542
[47]
Zhang X, Zhan Q, Dai G, et al. Effect of mechanical strain on magnetic properties of flexible exchange biased FeGa/IrMn heterostructures. Appl Phys Lett, 2013, 102(2): 022412 doi: 10.1063/1.4776661
[48]
Blachowicz T, Tillmanns A, Fraune M, et al. Exchange bias in epitaxial CoO/Co bilayers with different crystallographic symmetries. Phys Rev B, 2007, 75(5): 054425 doi: 10.1103/PhysRevB.75.054425
[49]
Bai Y H, Wang X, Mu L P, et al. Theoretical investigation of influence of mechanical stress on magnetic properties of ferromagnetic/antiferromagnetic bilayers deposited on flexible substrates. Chin Phys Lett, 2016, 33(8): 087501 doi: 10.1088/0256-307X/33/8/087501
[50]
Pan J, Tao Y C, Hu J G. The exchange bias in ferromagnetic/ antiferromagnetic bilayers under the stress field. Acta Phys Sin, 2006, 55(6): 3032
[51]
Binek C, Borisov P, Chen X, et al. Perpendicular exchange bias and its control by magnetic, stress and electric fields. Eur Phys J B, 2005, 45(2): 197 doi: 10.1140/epjb/e2005-00054-2
[52]
Zhang Y, Zhan Q, Rong X, et al. Influence of thermal deformation on exchange bias in FeGa/IrMn bilayers grown on flexible polyvinylidene fluoride membranes. IEEE Trans Magn, 2016, 52(7): 4800104
[53]
Qiao X, Wang B, Tang Z, et al. Tuning magnetic anisotropy of amorphous CoFeB film by depositing on convex flexible substrates. AIP Adv, 2016, 6(5): 056106 doi: 10.1063/1.4943153
[54]
Yu Y, Zhan Q, Wei J, et al. Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates. Appl Phys Lett, 2015, 106(16): 162405 doi: 10.1063/1.4918964
[55]
Qiao X Y, Wen X C, Wang B M. Enhanced stress-invariance of magnetization direction in magnetic thin films. Appl Phys Lett, 2017, 111: 132405 doi: 10.1063/1.4990571
[56]
Wen X C, Wang B M, Sheng P, et al. Determination of stress-coefficient of magnetoelastic anisotropy in flexible amorphous CoFeB film by anisotropic magnetoresistance. Appl Phys Lett, 2017, 111(14): 142403 doi: 10.1063/1.4999493
[57]
Zhang S, Zhan Q, Yu Y, et al. Surface morphology and magnetic property of wrinkled FeGa thin films fabricated on elastic polydimethylsiloxane. Appl Phys Lett, 2016, 108(10): 102409 doi: 10.1063/1.4943943
[58]
Loong L M, Lee W, Qiu X, et al. Flexible MgO Barrier Magnetic Tunnel Junctions. Adv Mater, 2016, 28(25): 4983 doi: 10.1002/adma.201600062
[59]
Roy K, Bandyopadhyay S, Atulasimha J. Hybrid spintronics and straintronics: A magnetic technology for ultra low energy computing and signal processing. Appl Phys Lett, 2011, 99(6): 063108 doi: 10.1063/1.3624900
[60]
Li P S, Chen A T, Li D L, et al. Electric field manipulation of magnetization rotation and tunneling magnetoresistance of magnetic tunnel junctions at room temperature. Adv Mater, 2014, 26(25): 4320 doi: 10.1002/adma.v26.25
[61]
Barangi M,Mazumder P. Straintronics-based magnetic tunneling junction: dynamic and static behavior analysis and material investigation. Appl Phys Lett, 2014, 104(16): 162403 doi: 10.1063/1.4873128
[62]
Bradley D. Graphene straintronics CARBON. Mater Today, 2012, 15(5): 185
[63]
Cai Y Q, Bai Z Q, Yang M, et al. Effect of interfacial strain on spin injection and spin polarization of Co2CrAl/NaNbO3/ Co2CrAl magnetic tunneling junction. EPL, 2012, 99(3): 37001 doi: 10.1209/0295-5075/99/37001
[64]
Fashami M S, Munira K, Bandyopadhyay S, et al. Switching of dipole coupled multiferroic nanomagnets in the presence of thermal noise: reliability of nanomagnetic logic. IEEE Trans Nanotechnol, 2013, 12(6): 1206 doi: 10.1109/TNANO.2013.2284777
[65]
Mamin H J, Gurney B A, Wilhoit D R, et al. High sensitivity spin-valve strain sensor. Appl Phys Lett, 1998, 72(24): 3220 doi: 10.1063/1.121555
[66]
Linville E, Han D, Judy J, et al. Stress effects on the magnetic properties of FeMn and NiMn spin valves. IEEE Trans Magn, 1998, 34(4): 894 doi: 10.1109/20.706303
[67]
Han D H, Zhu J G, Judy J H, et al. Stress effects on exchange coupling field, coercivity, and uniaxial anisotropy field of NiO/NiFe bilayer thin film for spin valves. J Appl Phys, 1997, 81(8): 4519 doi: 10.1063/1.364935
[68]
Oezkaya B, Saranu S R, Mohanan S, et al. Effects of uniaxial stress on the magnetic properties of thin films and GMR sensors prepared on polyimide substrates. Phys Status Solidi A, 2008, 205(8): 1876 doi: 10.1002/pssa.v205:8
[69]
Oksuzoglu R M, Schug C, York B. Influence of stress and unidirectional field annealing on structural and magnetic performance of PtMn bottom spin-filter spin valves. J Magn Magn Mater, 2004, 280(2/3): 304
[70]
Qian L J, Xu X Y, Hu J G. The magnetoresistive effect induced by stress in spin-valve structures. Chin Phys B, 2009, 18(6): 2589 doi: 10.1088/1674-1056/18/6/078
[71]
Tsu I F, Burg G A, Wood W P. Degradation of spin valve heads under accelerated stress conditions. IEEE Trans Magn, 2001, 37(4): 1707 doi: 10.1109/20.950944
[72]
Xu X, Li M, Hu J, et al. Strain-induced magnetoresistance for novel strain sensors. J Appl Phys, 2010, 108(3): 033916 doi: 10.1063/1.3465299
[73]
Shirota Y, Tsunashima S, Imada R, et al. Giant magnetoresistance effect in CoFeB/Cu/CoFeB spin valves. Jpn J Appl Phys, Part 1, 1999, 38(2A): 714
[74]
Binasch G, Grünberg P, Saurenbach F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B, 1989, 39(7): 4828 doi: 10.1103/PhysRevB.39.4828
[75]
Baibich M N, Broto J M, Fert A, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett, 1988, 61(21): 2472 doi: 10.1103/PhysRevLett.61.2472
[76]
Parkin S S P, Roche K P, Suzuki T. Giant magnetoresistance in antiferromagnetic Co/Cu multilayers grown on kapton. Jpn J Appl Phys, Part 2, 1992, 31(9A): L1246
[77]
Uhrmann T, Bär L, Dimopoulos T, et al. Magnetostrictive GMR sensor on flexible polyimide substrates. J Magn Magn Mater, 2006, 307(2): 209 doi: 10.1016/j.jmmm.2006.03.070
[78]
Li H, Zhan Q, Liu Y, et al. stretchable spin valve with stable magnetic field sensitivity by ribbon-patterned periodic wrinkles. ACS Nano, 2016, 10(4): 4403 doi: 10.1021/acsnano.6b00034
[79]
Melzer M, Kaltenbrunner M, Makarov D, et al. Imperceptible magnetoelectronics. Nat Commun, 2015, 6: 6080 doi: 10.1038/ncomms7080
Fig. 1.  (Color online) The molds designed for applying strains[22]: (a) tensile strain, (b) compressive strain. Hysteresis loops of Co40Fe40B20 (70 nm)/PET under various external strains: (c) tensile strain, (d) compressive strain applied along the hard axis, (e) tensile strain, (f) compressive strain applied along the easy axis.

Fig. 2.  (Color online) Strain dependence of normalized Mr/Ms and Hc for strains applied along the easy and hard axes, respectively[22].

Fig. 3.  (Color online) Magnetic hysteresis loops of Fe81Ga19(50 nm)/Ta(10 nm)/PET with the direction of magnetic field along the (a) easy and (b) hard axes under compressive and tensile strains[38].

Fig. 4.  (Color online) Temperature dependence of magnetic properties of Co40Fe40B20/PVDF[43]. (a) In-plane magnetic hysteresis loops measured along x direction at different temperatures. (b) In-plane magnetic hysteresis loops measured along y direction at different temperatures. (c) Temperature dependence of the remanent magnetization with H along x and y directions, respectively. The inset: angular dependence of Mr/Ms at T = 290 and 310 K. (d) Temperature dependence of the remanent magnetization with H along x and y directions for the samples prepared at different temperatures.

Fig. 5.  (Color online) Angular dependence of normalized remanent magnetization for Fe81Ga19/PVDF films with different compressive strains along the x direction[23].

Fig. 6.  (Color online) Angular dependence of normalized remanent magnetization for the Fe81Ga19/PVDF film with a compressive strain of (a) 0.06% and (b) 0.00% along the x direction under different electric fields[23].

Fig. 7.  (Color online) (a) Magnetization of FeGa/PVDF film reversed by thermal cycling under an alternatively positive and negative magnetic field. Top: thermal cycles between 280 and 320 K. Middle: an alternatively positive and negative magnetic field used for the measurements. Bottom: measurements of magnetization under the sequence of thermal cycles and magnetic field[23].

Fig. 8.  (Color online) Strain dependence of (a) loop squareness, (b) Hc, (c) Heb for H parallel and ε perpendicular to the PD, and (d) Hc for H perpendicular and ε parallel to the PD in FeGa(10 nm)/IrMn(tIrMn) bilayers with different tIrMn[20].

Fig. 9.  (Color online) Hysteresis loops measured at different temperatures for the FeGa/IrMn bilayers deposited on flexible PVDF membranes with the PD set (c, d) along the x direction and (e, f) along the y direction. The magnetic field is applied at (c, e) θ = 0° and (d, f) θ = 90° with respect to the PD. The configurations of measurement are schematically indicated in the insets of (c) and (e), respectively[52].

Fig. 10.  (Color online) (a) A schematic illustration of the experimental setup for sample fabrication (b) diagram of the flattened state of magnetic film (c) angular dependence of normalized Mr/Ms of 70 nm CoFeB film (d) the curvature radii dependence of the anisotropy field (Hk) for CoFeB films with different thicknesses (e) the thickness of film dependence of the anisotropy field (Hk) with different curvature radii, (f) the thickness of substrate dependence of the anisotropy field (Hk) for CoFeB films with different curvature radii[53].

Fig. 11.  (Color online) (a) A schematic illustration of the experimental setup for sample fabrication during depositing processes, both bowed growth and magnetic field are used to induce the anisotropy of magnetic materials. (b) Diagram of the flattened state of magnetic film after deposition, a compressive stress is produced in film when substrates are shaped from convex to flat. (c) The strain dependence of normalized Mr/Ms for bending CoFeB films with and without pre-induced magnetic anisotropy, respectively[55].

Fig. 12.  (Color online) (a) Schematic illustration of the method A used to fabricate wrinkled FeGa films. (b) Schematic representation of the method B used to fabricate wrinkled FeGa films[57].

Fig. 13.  (Color online) Hysteresis loops for FeGa films with different thicknesses obtained by the method A when the magnetic field is applied (a) parallel and (b) perpendicular to wrinkles, (c) coercive field Hc as a function of the magnetic field orientation with respect to the wrinkles. Method B when the magnetic field is applied (d) parallel and (e) perpendicular to wrinkles, (f) coercive field Hc as a function of the magnetic field orientation with respect to the wrinkles[57].

Fig. 14.  (Color online) (a) Schematic illustration of (Co/Cu)N MLs deposited on Si and flexible substrates, and a photographic image of circularly bent (Co/Cu)20 MLs deposited on polyester substrate. (b) Strain-dependent GMR of (Co-1 nm/Cu-t nm)30 MLs deposited on polyester substrates under 0.2 Tesla[16].

Fig. 15.  (Color online) (a) Fabrication process of stretchable magnetic sensors with random wrinkling and periodic fracture of the spin valve stack. In situ GMR measurements during tensile deformations of the prepared SV sensor elements. (b) Full loop and (c) minor loop GMR curves at different applied strains. (d) Magnitude of the GMR ratio and absolute sample resistance in dependence of tensile strain up to the point where the electrical contact is lost. (e) Coercivity and sensitivity of the free layer over applied tensile strain[11].

Fig. 16.  (Color online) (a) The layer structure of the dual spin valve (not to scale). (b) An illustrative drawing of the experimental setup for the sample fabrication. (c) A schematic diagram for the appearance of as-fabricated sample after releasing the tensile pre-strain[78].

Fig. 17.  (Color online) GMR curves of (a) SVR-0% without applied strain, (b) SVR-30% with 0 (solid circles) and 25% (open circles) applied tensile strain, and (c) SVR-50% with 0 (solid circles) and 25% (open circles) applied tensile strain. Inset in (c) shows the GMR measurement geometry: both the current and the applied tensile strain are parallel to the ribbons, while the magnetic field is applied perpendicular to the ribbons. The applied tensile strain dependence of (d) the GMR ratio (ΔR/R0)max (squares), (e) the magnetic field sensitivity S (circles), and (f) the zero-field resistance R0 (triangles) for SVR-30% (solid symbols) and SVR-50% (open symbols). The uniaxial tensile strain from 0 to 35% is applied along the ribbons[78].

Fig. 18.  (Color online) (a) The post fabrication step to obtain ultra-stretchable GMR sensors from imperceptible elements by face-down lamination onto a highly pre-stretched stripe of VHB tape. Four contact pads are reaching beyond the tape (top). Relaxing the elastomer results in out-of-plane wrinkling of the sensor foil and enables re-stretching (bottom). (b) GMR curves of an imperceptible Co(1 nm)/[Co(1 nm)/Cu(2.2 nm)]30 multilayer element at a flat state before lamination onto the pre-stretched VHB support and at a highly wrinkled state after the release of pre-strain[79].

Fig. 19.  (Color online) (a) A Co(1 nm)/[Co(1 nm)/Cu(2.2 nm)]30 sample mounted to the in situ stretching stage relaxed (left) and fully elongated (up). The arrow in the left image indicates the axis of the applied magnetic field. (b) GMR curves recorded for strains from 0% to 250% in increments of 50%, plus 270% and 275%, according to the legend[79].

Fig. 20.  (Color online) Imperceptible GMR sensors: (a)–(c) Imperceptible GMR sensor array on a human palm with one element connected to a readout circuit during rest, moving the hand and in proximity to a permanent magnet, respectively. All scale bars: 20 mm. (d) recorded resistance of the sensor element for panels (a)–(c)[79].

[1]
Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 2004, 428(6986): 911 doi: 10.1038/nature02498
[2]
Someya T, Kato Y, Sekitani T, et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci USA, 2005, 102(35): 12321 doi: 10.1073/pnas.0502392102
[3]
Putz B, Schoeppner R L, Glushko O, et al. Improved electro-mechanical performance of gold films on polyimide without adhesion layers. Sci Mater, 2015, 102: 23
[4]
Makarov D, Melzer M, Karnaushenko D, et al. Shapeable magnetoelectronics. Appl Phys R, 2016, 3(1): 011101 doi: 10.1063/1.4938497
[5]
Tao L, Wang D, Jiang S, et al. Fabrication techniques and applications of flexible graphene-based electronic devices. J Semicond, 2016, 37(4): 041001 doi: 10.1088/1674-4926/37/4/041001
[6]
Sunkook K, Hyuk-Jun K, Sunghun L, et al. Low-power flexible organic light-emitting diode display device. Adv Mater, 2011, 23(31): 3511 doi: 10.1002/adma.201101066
[7]
Yagi I, Hirai N, Miyamoto Y, et al. A flexible full-color AMOLED display driven by OTFTs. J Soc Inf Display, 2008, 16(1): 15 doi: 10.1889/1.2835023
[8]
Gaikwad A M, Steingart D A, Nga Ng T, et al. A flexible high potential printed battery for powering printed electronics. Appl Phys Lett, 2013, 102: 233302 doi: 10.1063/1.4810974
[9]
Gingerich M D, Akhmechet R, Cogan S F, et al. A microfabricated, combination flexible circuit/electrode array for a subretinal prosthesis. Invest Ophthalmol Vis Sci, 2012, 53: 535
[10]
Barraud C, Deranlot C, Seneor P, et al. Magnetoresistance in magnetic tunnel junctions grown on flexible organic substrates. Appl Phys Lett, 2010, 96(7): 911
[11]
Melzer M, Lin G, Makarov D, et al. Stretchable spin valves on elastomer membranes by predetermined periodic fracture and random wrinkling. Adv Mater, 2012, 24(48): 6468 doi: 10.1002/adma.v24.48
[12]
Vemulkar T, Mansell R, Fernández-Pacheco A, et al. toward flexible spintronics: perpendicularly magnetized synthetic antiferromagnetic thin films and nanowires on polyimide substrates. Adv Funct Mater, 2016, 26(26): 4704 doi: 10.1002/adfm.v26.26
[13]
Kim J, Hwang J, Song K, et al. Ultra-thin flexible GaAs photovoltaics in vertical forms printed on metal surfaces without interlayer adhesives. Appl Phys Lett, 2016, 108(25): 253101 doi: 10.1063/1.4954039
[14]
Rance W L, Burst J M, Meysing D M, et al. 14%-efficient flexible CdTe solar cells on ultra-thin glass substrates. Appl Phys Lett, 2014, 104(14): 827
[15]
Lim G H, Lee J, Kwon N, et al. Fabrication of flexible magnetic papers based on bacterial cellulose and barium hexaferrite with improved mechanical properties. Electr Mater Lett, 2016, 12(5): 574 doi: 10.1007/s13391-016-6179-x
[16]
Chen Y F, Mei Y, Kaltofen R, et al. Towards flexible magnetoelectronics: buffer-enhanced and mechanically tunable GMR of Co/Cu multilayers on plastic substrates. Adv Mater, 2008, 20(17): 3224 doi: 10.1002/adma.v20:17
[17]
Pérez N, Melzer M, Makarov D, et al. High-performance giant magnetoresistive sensorics on flexible Si membranes. Appl Phys Lett, 2015, 106(15): 153501 doi: 10.1063/1.4918652
[18]
Dai G, Zhan Q, Liu Y, et al. Mechanically tunable magnetic properties of Fe81Ga19 films grown on flexible substrates. Appl Phys Lett, 2012, 100(12): 122407 doi: 10.1063/1.3696887
[19]
Dai G, Zhan Q, Yang H, et al. Controllable strain-induced uniaxial anisotropy of Fe81Ga19 films deposited on flexible bowed-substrates. J Appl Phys, 2013, 114(17): 173913 doi: 10.1063/1.4829670
[20]
Zhang X, Zhan Q, Dai G, et al. Effect of mechanical strain on magnetic properties of flexible exchange biased FeGa/IrMn heterostructures. Appl Phys Lett, 2013, 102(2): 022412 doi: 10.1063/1.4776661
[21]
Liu Y W, Zhan Q F, Li R W. Fabrication, properties, and applications of flexible magnetic films. Chin Phys B., 2013, 22(12): 127502 doi: 10.1088/1674-1056/22/12/127502
[22]
Tang Z, Wang B, Yang H, et al. Magneto-mechanical coupling effect in amorphous Co40Fe40B20 films grown on flexible substrates. Appl Phys Lett, 2014, 105(10): 103504 doi: 10.1063/1.4895628
[23]
Liu Y, Zhan Q, Wang B, et al. Modulation of magnetic anisotropy in flexible multiferroic FeGa/PVDF heterostructures under various strains. IEEE Trans Magn, 2015, 51(11): 2501404
[24]
Polisetty S, Echtenkamp W, Jones K, et al. Piezoelectric tuning of exchange bias in a BaTiO3/Co/CoO heterostructure. Phys Rev B, 2010, 82(13): 134419 doi: 10.1103/PhysRevB.82.134419
[25]
Liu L P, Zhan Q F , Xin R, et al. Effect of thermal deformation on giant magnetoresistance of flexible spin valves grown on polyvinylidene fluoride membranes. Chin Phys B, 2016, 25(7): 077307 doi: 10.1088/1674-1056/25/7/077307
[26]
Cao D, Wang Z, Pan L, et al. Controllable magnetic and magnetostrictive properties of FeGa films electrodeposited on curvature substrates. Appl Phys A, 2016, 122(11): 938 doi: 10.1007/s00339-016-0468-y
[27]
Asai R, Ota S, Namazu T, et al. Stress-induced large anisotropy field modulation in Ni films deposited on a flexible substrate. J Appl Phys, 2016, 120(8): 083906 doi: 10.1063/1.4961564
[28]
Kumar D, Singh S, Vishawakarma P, et al. Tailoring of in-plane magnetic anisotropy in polycrystalline cobalt thin films by external stress. J Magn Magn Mater, 2016, 418: 99 doi: 10.1016/j.jmmm.2016.03.072
[29]
Mouhamadou G, Pierpaolo L, Fatih Z, et al. Unambiguous magnetoelastic effect on residual anisotropy in thin films deposited on flexible substrates. EPL, 2016, 114(1): 17003 doi: 10.1209/0295-5075/114/17003
[30]
Zhang H, Li Y Y, Yang M Y, et al. Tuning the magnetic anisotropy of CoFeB grown on flexible substrates. Chin Phys B, 2015, 24(7): 077501 doi: 10.1088/1674-1056/24/7/077501
[31]
Koch R, Weber M, Thurmer K, et al. Magnetoelastic coupling of Fe at high stress investigated by means of epitaxial Fe(001) films. J Magn Magn Mater, 1996, 159(1/2): L11
[32]
Wu X W, Rzchowski M S, Wang H S, et al. Strain-induced magnetic properties of Pr0.67Sr0.33MnO3 thin films. Phys Rev B, 2000, 61(1): 501 doi: 10.1103/PhysRevB.61.501
[33]
Takagi H, Tsunashima S, Uchiyama S, et al. Stress-induced anisotropy in amorphous Gd–Fe and Tb–Fe sputtered films. J Appl Phys, 1979, 50(3): 1642
[34]
Sander D. The correlation between mechanical stress and magnetic anisotropy in ultrathin films. Rep Prog Phys, 1999, 62(5): 809 doi: 10.1088/0034-4885/62/5/204
[35]
Sander D, Enders A,Kirschner J. Stress and magnetic properties of surfaces and ultrathin films. J Magn Magn Mater, 1999, 200(1-3): 439 doi: 10.1016/S0304-8853(99)00310-8
[36]
Jung C U, Yamada H, Kawasaki M, et al. Magnetic anisotropy control of SrRuO3 films by tunable epitaxial strain. Appl Phys Lett, 2004, 84(14): 2590 doi: 10.1063/1.1695195
[37]
Yu G Q, Wang Z X, Abolfath-Beygi M, et al. Strain-induced modulation of perpendicular magnetic anisotropy in Ta/CoFeB/MgO structures investigated by ferromagnetic resonance. Appl Phys Lett, 2015, 106(7): 072402 doi: 10.1063/1.4907677
[38]
Zhang X, Zhan Q, Dai G, et al. Effect of buffer layer and external stress on magnetic properties of flexible FeGa films. J Appl Phys, 2013, 113(17): 17A901 doi: 10.1063/1.4793602
[39]
Huang W, Zhu J, Zeng H Z, et al. Strain induced magnetic anisotropy in highly epitaxial CoFe2O4 thin films. Appl Phys Lett, 2006, 89(26): 262506 doi: 10.1063/1.2424444
[40]
Thiele J U, Maat S,Fullerton E E. FeRh/FePt exchange spring films for thermally assisted magnetic recording media. Appl Phys Lett, 2003, 82(82): 2859
[41]
Phuoc N N, Chai G, Ong C K. Temperature-dependent dynamic magnetization of FeCoHf thin films fabricated by oblique deposition. J Appl Phys, 2012, 112(8): 83925 doi: 10.1063/1.4763361
[42]
Mcdaniel T. Ultimate limits to thermally assisted magnetic recording. J Phys: Conden Matt, 2005, 17(17): R315
[43]
Liu Y, Wang B, Zhan Q, et al. Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites. Sci Rep, 2014, 4(4): 6615
[44]
Lamy Y, Viala B. NiMn, IrMn, and NiO Exchange Coupled CoFe multilayers for microwave applications. IEEE Trans Magn, 2006, 42(10): 3332 doi: 10.1109/TMAG.2006.878871
[45]
Parkin S S P. Flexible giant magnetoresistance sensors. Appl Phys Lett, 1996, 69(20): 3092 doi: 10.1063/1.117315
[46]
Cui B, Song C, Wang G Y, et al. Strain engineering induced interfacial self-assembly and intrinsic exchange bias in a manganite perovskite film. Sci Rep, 2013, 3(6): 2542
[47]
Zhang X, Zhan Q, Dai G, et al. Effect of mechanical strain on magnetic properties of flexible exchange biased FeGa/IrMn heterostructures. Appl Phys Lett, 2013, 102(2): 022412 doi: 10.1063/1.4776661
[48]
Blachowicz T, Tillmanns A, Fraune M, et al. Exchange bias in epitaxial CoO/Co bilayers with different crystallographic symmetries. Phys Rev B, 2007, 75(5): 054425 doi: 10.1103/PhysRevB.75.054425
[49]
Bai Y H, Wang X, Mu L P, et al. Theoretical investigation of influence of mechanical stress on magnetic properties of ferromagnetic/antiferromagnetic bilayers deposited on flexible substrates. Chin Phys Lett, 2016, 33(8): 087501 doi: 10.1088/0256-307X/33/8/087501
[50]
Pan J, Tao Y C, Hu J G. The exchange bias in ferromagnetic/ antiferromagnetic bilayers under the stress field. Acta Phys Sin, 2006, 55(6): 3032
[51]
Binek C, Borisov P, Chen X, et al. Perpendicular exchange bias and its control by magnetic, stress and electric fields. Eur Phys J B, 2005, 45(2): 197 doi: 10.1140/epjb/e2005-00054-2
[52]
Zhang Y, Zhan Q, Rong X, et al. Influence of thermal deformation on exchange bias in FeGa/IrMn bilayers grown on flexible polyvinylidene fluoride membranes. IEEE Trans Magn, 2016, 52(7): 4800104
[53]
Qiao X, Wang B, Tang Z, et al. Tuning magnetic anisotropy of amorphous CoFeB film by depositing on convex flexible substrates. AIP Adv, 2016, 6(5): 056106 doi: 10.1063/1.4943153
[54]
Yu Y, Zhan Q, Wei J, et al. Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates. Appl Phys Lett, 2015, 106(16): 162405 doi: 10.1063/1.4918964
[55]
Qiao X Y, Wen X C, Wang B M. Enhanced stress-invariance of magnetization direction in magnetic thin films. Appl Phys Lett, 2017, 111: 132405 doi: 10.1063/1.4990571
[56]
Wen X C, Wang B M, Sheng P, et al. Determination of stress-coefficient of magnetoelastic anisotropy in flexible amorphous CoFeB film by anisotropic magnetoresistance. Appl Phys Lett, 2017, 111(14): 142403 doi: 10.1063/1.4999493
[57]
Zhang S, Zhan Q, Yu Y, et al. Surface morphology and magnetic property of wrinkled FeGa thin films fabricated on elastic polydimethylsiloxane. Appl Phys Lett, 2016, 108(10): 102409 doi: 10.1063/1.4943943
[58]
Loong L M, Lee W, Qiu X, et al. Flexible MgO Barrier Magnetic Tunnel Junctions. Adv Mater, 2016, 28(25): 4983 doi: 10.1002/adma.201600062
[59]
Roy K, Bandyopadhyay S, Atulasimha J. Hybrid spintronics and straintronics: A magnetic technology for ultra low energy computing and signal processing. Appl Phys Lett, 2011, 99(6): 063108 doi: 10.1063/1.3624900
[60]
Li P S, Chen A T, Li D L, et al. Electric field manipulation of magnetization rotation and tunneling magnetoresistance of magnetic tunnel junctions at room temperature. Adv Mater, 2014, 26(25): 4320 doi: 10.1002/adma.v26.25
[61]
Barangi M,Mazumder P. Straintronics-based magnetic tunneling junction: dynamic and static behavior analysis and material investigation. Appl Phys Lett, 2014, 104(16): 162403 doi: 10.1063/1.4873128
[62]
Bradley D. Graphene straintronics CARBON. Mater Today, 2012, 15(5): 185
[63]
Cai Y Q, Bai Z Q, Yang M, et al. Effect of interfacial strain on spin injection and spin polarization of Co2CrAl/NaNbO3/ Co2CrAl magnetic tunneling junction. EPL, 2012, 99(3): 37001 doi: 10.1209/0295-5075/99/37001
[64]
Fashami M S, Munira K, Bandyopadhyay S, et al. Switching of dipole coupled multiferroic nanomagnets in the presence of thermal noise: reliability of nanomagnetic logic. IEEE Trans Nanotechnol, 2013, 12(6): 1206 doi: 10.1109/TNANO.2013.2284777
[65]
Mamin H J, Gurney B A, Wilhoit D R, et al. High sensitivity spin-valve strain sensor. Appl Phys Lett, 1998, 72(24): 3220 doi: 10.1063/1.121555
[66]
Linville E, Han D, Judy J, et al. Stress effects on the magnetic properties of FeMn and NiMn spin valves. IEEE Trans Magn, 1998, 34(4): 894 doi: 10.1109/20.706303
[67]
Han D H, Zhu J G, Judy J H, et al. Stress effects on exchange coupling field, coercivity, and uniaxial anisotropy field of NiO/NiFe bilayer thin film for spin valves. J Appl Phys, 1997, 81(8): 4519 doi: 10.1063/1.364935
[68]
Oezkaya B, Saranu S R, Mohanan S, et al. Effects of uniaxial stress on the magnetic properties of thin films and GMR sensors prepared on polyimide substrates. Phys Status Solidi A, 2008, 205(8): 1876 doi: 10.1002/pssa.v205:8
[69]
Oksuzoglu R M, Schug C, York B. Influence of stress and unidirectional field annealing on structural and magnetic performance of PtMn bottom spin-filter spin valves. J Magn Magn Mater, 2004, 280(2/3): 304
[70]
Qian L J, Xu X Y, Hu J G. The magnetoresistive effect induced by stress in spin-valve structures. Chin Phys B, 2009, 18(6): 2589 doi: 10.1088/1674-1056/18/6/078
[71]
Tsu I F, Burg G A, Wood W P. Degradation of spin valve heads under accelerated stress conditions. IEEE Trans Magn, 2001, 37(4): 1707 doi: 10.1109/20.950944
[72]
Xu X, Li M, Hu J, et al. Strain-induced magnetoresistance for novel strain sensors. J Appl Phys, 2010, 108(3): 033916 doi: 10.1063/1.3465299
[73]
Shirota Y, Tsunashima S, Imada R, et al. Giant magnetoresistance effect in CoFeB/Cu/CoFeB spin valves. Jpn J Appl Phys, Part 1, 1999, 38(2A): 714
[74]
Binasch G, Grünberg P, Saurenbach F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B, 1989, 39(7): 4828 doi: 10.1103/PhysRevB.39.4828
[75]
Baibich M N, Broto J M, Fert A, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett, 1988, 61(21): 2472 doi: 10.1103/PhysRevLett.61.2472
[76]
Parkin S S P, Roche K P, Suzuki T. Giant magnetoresistance in antiferromagnetic Co/Cu multilayers grown on kapton. Jpn J Appl Phys, Part 2, 1992, 31(9A): L1246
[77]
Uhrmann T, Bär L, Dimopoulos T, et al. Magnetostrictive GMR sensor on flexible polyimide substrates. J Magn Magn Mater, 2006, 307(2): 209 doi: 10.1016/j.jmmm.2006.03.070
[78]
Li H, Zhan Q, Liu Y, et al. stretchable spin valve with stable magnetic field sensitivity by ribbon-patterned periodic wrinkles. ACS Nano, 2016, 10(4): 4403 doi: 10.1021/acsnano.6b00034
[79]
Melzer M, Kaltenbrunner M, Makarov D, et al. Imperceptible magnetoelectronics. Nat Commun, 2015, 6: 6080 doi: 10.1038/ncomms7080
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 6522 Times PDF downloads: 231 Times Cited by: 0 Times

    History

    Received: 19 July 2017 Revised: 01 November 2017 Online: Accepted Manuscript: 08 December 2017Published: 01 January 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Ping Sheng, Baomin Wang, Runwei Li. Flexible magnetic thin films and devices[J]. Journal of Semiconductors, 2018, 39(1): 011006. doi: 10.1088/1674-4926/39/1/011006 P Sheng, B M Wang, R W Li, Flexible magnetic thin films and devices[J]. J. Semicond., 2018, 39(1): 011006. doi: 10.1088/1674-4926/39/1/011006.Export: BibTex EndNote
      Citation:
      Ping Sheng, Baomin Wang, Runwei Li. Flexible magnetic thin films and devices[J]. Journal of Semiconductors, 2018, 39(1): 011006. doi: 10.1088/1674-4926/39/1/011006

      P Sheng, B M Wang, R W Li, Flexible magnetic thin films and devices[J]. J. Semicond., 2018, 39(1): 011006. doi: 10.1088/1674-4926/39/1/011006.
      Export: BibTex EndNote

      Flexible magnetic thin films and devices

      doi: 10.1088/1674-4926/39/1/011006
      Funds:

      Project supported by the National Key R&D Program of China (No. 2016YFA0201102), the National Natural Science Foundation of China (Nos. 51571208, 51301191, 51525103, 11274321, 11474295, 51401230), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2016270), the Key Research Program of the Chinese Academy of Sciences (No. KJZD-EW-M05), the Ningbo Major Project for Science and Technology (No. 2014B11011), the Ningbo Science and Technology Innovation Team (No. 2015B11001), and the Ningbo Natural Science Foundation (No. 2015A610110).

      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return