SEMICONDUCTOR DEVICES

Ultralow specific ON-resistance high-k LDMOS with vertical field plate

Lijuan Wu, Limin Hu, Lin Zhu, Hang Yang, Bing Lei and Haiqing Xie

+ Author Affiliations

 Corresponding author: Lijuan Wu, 305719669@qq.com

PDF

Turn off MathJax

Abstract: An ultralow specific on-resistance high-k LDMOS with vertical field plate (VFP HK LDMOS) is proposed. The high-k dielectric trench and highly doped interface N+ layer are made in bulk silicon to reduce the surface field of the drift region in the VFP HK LDMOS. The gate vertical field plate (VFP) pinning in the high-k dielectric trench can modulate the bulk electric field. The high-k dielectric not only provides polarized charges to assist depletion of the drift region, so that the drift region and high-k trench maintain charge balance adaptively, but also can fully assist in depleting the drift region to increase the drift doping concentration and reshape the electric field to avoid premature breakdown. Compared with the conventional structure, the VFP HK LDMOS has the breakdown voltage of 629.1 V at the drift length of 40 μm and the specific on-resistance of 38.4 mΩ·cm2 at the gate potential of 15 V. Then the power figure of merit is 10.31 MW/cm2.

Key words: high-k dielectricvertical field platehigh voltagespecific on-resistancepolarized charges



[1]
Hu S D, Zhang B, Li Z J, et al. A new structure and its analytical model for the vertical interface electric field of a partial-SOI high voltage device. Chin Phys B, 2010, 19(3): 037303 doi: 10.1088/1674-1056/19/3/037303
[2]
Hu S D, Zhang B, Li Z J. A new analytical model of high voltage silicon on insulator(SOI) thin film devices. Chin Phys B, 2009, 18(1): 315 doi: 10.1088/1674-1056/18/1/051
[3]
Li Q, Li Z J, Zhang B. Analytical model for the surface electrical field distribution of double RESURF device with surface. Acta Phys Soc, 2007, 56(11): 6660
[4]
Zhou K, Luo X, Xu Q, et al. A RESURF-enhanced p-channel trench SOI LDMOS with ultralow specific on-resistance. IEEE Trans Electron Devices, 2014, 61(7): 2466 doi: 10.1109/TED.2014.2321146
[5]
Wu L J, Zhang W T, Qiao M, et al. SOI SJ high voltage device with linear variable doping interface thin silicon layer. Electron Lett, 2012, 48(5): 297
[6]
Zhang W, Zhang B, Qiao M, et al. Optimization and new structure of superjunction with isolator layer. IEEE Trans Electron Devices, 2016, 64(1): 217
[7]
Li J, Li P, Huo W, et al. Analysis and fabrication of an LDMOS with high-permittivity dielectric. IEEE Electron Device Letters, 2011, 32(9): 1266 doi: 10.1109/LED.2011.2158383
[8]
Luo X, Jiang Y H, Zhou K, et al. Ultralow specific on-resistance superjunction vertical DMOS with high-k, dielectric pillar. IEEE Electron Device Lett, 2012, 33(7): 1042 doi: 10.1109/LED.2012.2196969
[9]
Chen X B, Huang M M. A Vertical power MOSFET with an interdigitated drift region using high-k insulator. IEEE Trans Electron Devices, 2012, 59(9): 2430 doi: 10.1109/TED.2012.2204890
[10]
Chen X. Super-junction voltage sustaining layer with alternating semiconductor and high-k dielectric regions: US Patent, US7230310. 2007
[11]
Guo Y, Yao J, Zhang B, et al. Variation of lateral width technique in SoI high-voltage lateral `double-diffused` metal–oxide–semiconductor transistors using high-k dielectric. IEEE Electron Device Lett, 2015, 36(3): 262 doi: 10.1109/LED.2015.2393913
[12]
Li H, Chen X B. Deep trench junction termination employing variable-k dielectric for high voltage devices. IEEE 11th International Conference on ASIC (ASICON), Chengdu, China, 2015
[13]
Luo X, Lv M, Yin C, et al. Ultralow on-resistance SOI LDMOS with three separated gates and high-k, dielectric. IEEE Trans Electron Devices, 2016, 63(9): 3804 doi: 10.1109/TED.2016.2589322
[14]
Wu L, Zhang W, Shi Q, et al. Trench SOI LDMOS with vertical field plate. Electron Lett, 2014, 50(25): 1982 doi: 10.1049/el.2014.3443
[15]
Xia C, Cheng X, Wang Z, et al. Improvement of SOI trench LDMOS performance with double vertical metal field plate. IEEE Trans Electron Devices, 2014, 61(10): 3477 doi: 10.1109/TED.2014.2349553
Fig. 1.  (Color online) Schematic cross-section view of VFP HK LDMOS.

Fig. 2.  (Color online) Off-state electric field distribution of Con. LDMOS and VFP HK LDMOS. (a) Lateral electric field. (b) Vertical electric field.

Fig. 3.  (Color online) (a) Four kinds of structure transfer characteristics. (b) Optimal comparison of drift region concentration, specific on-resistance and power value.

Fig. 4.  (Color online) (a) Electron concentration distribution at the interface of high-k trench. (b) Electron concentration distribution on the left of high-k trench.

Fig. 5.  (Color online) Effect of parameters on the BV and Ron,sp of Con. LDMOS and VFP HK LDMOS (a) Nd and (b) k value of VFP HK LDMOS.

Fig. 6.  (Color online) (a) Influence of tp on VFP HK LDMOS BV and Ron,sp. (b) Influence of Lp on VFP HK LDMOS BV and Ron,sp.

Fig. 7.  (Color online) Comparison of Ron,sp among different LDMOS devices.

Fig. 8.  Key process steps to fabricate a prototype of VFP HK LDMOS.

Table 2.   BV, Ron,sp, FOM = BV2/Ron,sp for the devices.

Device structure Nd (1015 cm−3) BV (V) Ron,sp (mΩ·cm2) @ Vgs = 15 V BV2/Ron,sp (MW/cm2)
VFP HK LDMOS (k = 800) 7.5 629.1 38.4 10.31
HKLR LDMOS (k = 800)[14] 3.5 649 82.8 5.09
DT HK LDMOS (lp = 2k = 800) 2 162.4 86.4 0.31
Con. LDMOS 1.1 388.9 147.5 1.02
DownLoad: CSV

Table 1.   Structure parameters used in the simulation.

Symbol Description Value
tp Length of gate field plate (μm) 2
tk Depth of high-k trench (μm) 3
k k value of high-k dielectric 800
Ld Length of N (μm) Optimized
Nn+ Concentration of N (cm−3) Optimized
tn Thickness of N (μm) 0.5
ts Distance from the bottom of the high-k trench to the top of the substrate (μm) 2
Lp Distance from vertical field plate to the left side of the high-k trench (μm) 2
Nd Concentration of drift region (cm−3) 7.4 $ \times $ 1016
tsub Thickness of substrate (μm) 80
Nsub Concentration of substrate (cm−3) 1 $ \times $ 1014
DownLoad: CSV
[1]
Hu S D, Zhang B, Li Z J, et al. A new structure and its analytical model for the vertical interface electric field of a partial-SOI high voltage device. Chin Phys B, 2010, 19(3): 037303 doi: 10.1088/1674-1056/19/3/037303
[2]
Hu S D, Zhang B, Li Z J. A new analytical model of high voltage silicon on insulator(SOI) thin film devices. Chin Phys B, 2009, 18(1): 315 doi: 10.1088/1674-1056/18/1/051
[3]
Li Q, Li Z J, Zhang B. Analytical model for the surface electrical field distribution of double RESURF device with surface. Acta Phys Soc, 2007, 56(11): 6660
[4]
Zhou K, Luo X, Xu Q, et al. A RESURF-enhanced p-channel trench SOI LDMOS with ultralow specific on-resistance. IEEE Trans Electron Devices, 2014, 61(7): 2466 doi: 10.1109/TED.2014.2321146
[5]
Wu L J, Zhang W T, Qiao M, et al. SOI SJ high voltage device with linear variable doping interface thin silicon layer. Electron Lett, 2012, 48(5): 297
[6]
Zhang W, Zhang B, Qiao M, et al. Optimization and new structure of superjunction with isolator layer. IEEE Trans Electron Devices, 2016, 64(1): 217
[7]
Li J, Li P, Huo W, et al. Analysis and fabrication of an LDMOS with high-permittivity dielectric. IEEE Electron Device Letters, 2011, 32(9): 1266 doi: 10.1109/LED.2011.2158383
[8]
Luo X, Jiang Y H, Zhou K, et al. Ultralow specific on-resistance superjunction vertical DMOS with high-k, dielectric pillar. IEEE Electron Device Lett, 2012, 33(7): 1042 doi: 10.1109/LED.2012.2196969
[9]
Chen X B, Huang M M. A Vertical power MOSFET with an interdigitated drift region using high-k insulator. IEEE Trans Electron Devices, 2012, 59(9): 2430 doi: 10.1109/TED.2012.2204890
[10]
Chen X. Super-junction voltage sustaining layer with alternating semiconductor and high-k dielectric regions: US Patent, US7230310. 2007
[11]
Guo Y, Yao J, Zhang B, et al. Variation of lateral width technique in SoI high-voltage lateral `double-diffused` metal–oxide–semiconductor transistors using high-k dielectric. IEEE Electron Device Lett, 2015, 36(3): 262 doi: 10.1109/LED.2015.2393913
[12]
Li H, Chen X B. Deep trench junction termination employing variable-k dielectric for high voltage devices. IEEE 11th International Conference on ASIC (ASICON), Chengdu, China, 2015
[13]
Luo X, Lv M, Yin C, et al. Ultralow on-resistance SOI LDMOS with three separated gates and high-k, dielectric. IEEE Trans Electron Devices, 2016, 63(9): 3804 doi: 10.1109/TED.2016.2589322
[14]
Wu L, Zhang W, Shi Q, et al. Trench SOI LDMOS with vertical field plate. Electron Lett, 2014, 50(25): 1982 doi: 10.1049/el.2014.3443
[15]
Xia C, Cheng X, Wang Z, et al. Improvement of SOI trench LDMOS performance with double vertical metal field plate. IEEE Trans Electron Devices, 2014, 61(10): 3477 doi: 10.1109/TED.2014.2349553
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3871 Times PDF downloads: 43 Times Cited by: 0 Times

    History

    Received: 08 February 2018 Revised: 14 March 2018 Online: Uncorrected proof: 25 May 2018Published: 09 October 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Lijuan Wu, Limin Hu, Lin Zhu, Hang Yang, Bing Lei, Haiqing Xie. Ultralow specific ON-resistance high-k LDMOS with vertical field plate[J]. Journal of Semiconductors, 2018, 39(10): 104006. doi: 10.1088/1674-4926/39/10/104006 L J Wu, L M Hu, L Zhu, H Yang, B Lei, H Q Xie. Ultralow specific ON-resistance high-k LDMOS with vertical field plate[J]. J. Semicond., 2018, 39(10): 104006. doi: 10.1088/1674-4926/39/10/104006.Export: BibTex EndNote
      Citation:
      Lijuan Wu, Limin Hu, Lin Zhu, Hang Yang, Bing Lei, Haiqing Xie. Ultralow specific ON-resistance high-k LDMOS with vertical field plate[J]. Journal of Semiconductors, 2018, 39(10): 104006. doi: 10.1088/1674-4926/39/10/104006

      L J Wu, L M Hu, L Zhu, H Yang, B Lei, H Q Xie. Ultralow specific ON-resistance high-k LDMOS with vertical field plate[J]. J. Semicond., 2018, 39(10): 104006. doi: 10.1088/1674-4926/39/10/104006.
      Export: BibTex EndNote

      Ultralow specific ON-resistance high-k LDMOS with vertical field plate

      doi: 10.1088/1674-4926/39/10/104006
      Funds:

      Project supported by the National Natural Science Foundtion of China (No.61404011), the Research and Innovation Project of Graduate Students of Changsha University of Science & Technology (No. CX2017SS25), the Scientific Research Fund of Hunan Provincial Education Department (No. 15C0034), and the Introduction of Talents Project of Changsha University of Science Technology (No. 1198023).

      More Information
      • Corresponding author: 305719669@qq.com
      • Received Date: 2018-02-08
      • Revised Date: 2018-03-14
      • Published Date: 2018-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return