SEMICONDUCTOR MATERIALS

Synthesis and characterization of ZnO–CuO nanocomposites powder by modified perfume spray pyrolysis method and its antimicrobial investigation

D. Saravanakkumar1, 6, S. Sivaranjani1, 2, K. Kaviyarasu3, 4, A. Ayeshamariam1, 5, , B. Ravikumar6, S. Pandiarajan6, C. Veeralakshmi6, M. Jayachandran7 and M. Maaza3, 4

+ Author Affiliations

 Corresponding author: A. Ayeshamariam, aismma786@gmail.com (A. Ayeshamariam)

PDF

Turn off MathJax

Abstract: Pure ZnO, ZnO–CuO nanocomposites can be synthesized by using a modified perfume spray pyrolysis method (MSP). The crystallite size of the nanoparticles (NPs) has been observed by X-ray diffraction pattern and is nearly 36 nm. Morphological studies have been analyzed by using Field Emission Scanning Electron Microscopy (FESEM) and its elemental analysis was reported by Elemental X-ray Analysis (EDX); these studies confirmed that ZnO and CuO have hexagonal structure and monoclinic structure respectively. Fourier Transform Infrared (FTIR) spectra revealed that the presence of functional frequencies of ZnO and CuO were observed at 443 and 616 cm−1. The average bandgap value at 3.25 eV using UV–vis spectra for the entitled composite has described a blue shift that has been observed here. The antibacterial study against both gram positive and negative bacteria has been studied by the disc diffusion method. To the best of our knowledge, it is the first report on ZnO–CuO nanocomposite synthesized by a modified perfume spray pyrolysis method.

Key words: MSP methodXRDFTIRFESEMCuO nanoparticles



[1]
Ravichandran K, Philominathan P, et al. Investigations on microstructural and optical properties of CdS films fabricated by a low-cost, simplified spray technique using perfume atomizer for solar cell applications. Solar Energy, 2008, 82(11): 1062 doi: 10.1016/j.solener.2008.04.012
[2]
Smith G. Clouds and Earth radiant energy system: an overview. Adv Space Res, 2004, 33(7): 1125 doi: 10.1016/S0273-1177(03)00739-7
[3]
Muzzio F J, Shinbrot T, Glasser B J. Powder technology in the pharmaceutical industry: the need to catch up fast. Powder Technol, 2002, 124(1): 1
[4]
Ayeshamariam A, Saravanakkumar D, Kashif M, et al. Analysis on the effect of ZnO on carbon nanotube by spray pyrolysis method. Mechan Adv Mater Modern Process, 2016, 2(1): 1 doi: 10.1186/s40759-016-0008-7
[5]
Patil P S. Versatility of chemical spray pyrolysis technique. Mater Chem Phys, 1999, 59(3): 185 doi: 10.1016/S0254-0584(99)00049-8
[6]
Shah N P, Lankaputhra W E V. Improving viability of Lactobacillus acidophilus and Bifidobacterium spp. in yogurt. Int Dairy J, 1997, 7(5): 349 doi: 10.1016/S0958-6946(97)00023-X
[7]
Pan Z Wei, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291(5510): 1947 doi: 10.1126/science.1058120
[8]
Wan Q, Li Q. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl Phys Lett, 2004, 84(18): 3654 doi: 10.1063/1.1738932
[9]
Zhang J T, Liu J F, Peng Q, et al. Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem Mater, 2006, 18(4): 867 doi: 10.1021/cm052256f
[10]
Saravanakumar K, Ravichandran K, Chandramohan R, et al. Investigation on simultaneous doping of Sn and F with ZnO nanopowders synthesized using a simple soft chemical route. Superlattices Microstruct, 2012, 52(3): 528 doi: 10.1016/j.spmi.2012.06.003
[11]
Bao C Y, Jin M, Lu R, et al. Surfactant-ligand co-assisted solvothermal technique for the synthesis of different-shaped CdS nanorod-based materials. J Solid State Chem, 2003, 175(2): 322 doi: 10.1016/S0022-4596(03)00298-6
[12]
Ray S C. Preparation of copper oxide thin film by the sol-gel-like dip technique and study of their structural and optical properties. Solar Energy Mater Solar cells, 2001, 68(3): 307
[13]
Ravichandran K, Saravanakumar K, Chandramohan R, et al. Influence of simultaneous doping of Cd and F on certain physical properties of ZnO nanopowders synthesized via a simple soft chemical route. Appl Surf Sci, 2012, 261(1): 405
[14]
Wagh M S, Patil L A, Tanay S, et al. Surface cupricated SnO2-ZnO thick films as a H2S gas sensor. Mater Chem Phys, 2004, 84(2): 228
[15]
Saravanan R, Karthikeyan S, Gupta V K et al. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater Sci Eng C, 2013, 33(1): 91 doi: 10.1016/j.msec.2012.08.011
[16]
Zhu Y W, Sow C H, Ting Yu T, et al. Co-synthesis of ZnO-CuO nanostructures by directly heating brass in air. Adv Funct Mater, 2006, 16(18): 2415 doi: 10.1002/(ISSN)1616-3028
[17]
Li B X, Wang Y F. Facile synthesis and photocatalytic activity of ZnO-CuO nanocomposite. Superlattices Microstruct, 2010, 47(5): 615 doi: 10.1016/j.spmi.2010.02.005
[18]
Kasemets K, Angela I. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicology in Vitro, 2009, 23(6): 1116 doi: 10.1016/j.tiv.2009.05.015
[19]
McKeel D W, Leonard J. Preparation and characterization of a plasma membrane fraction from isolated fat cells. J Cell Biology, 1970, 44(2): 417 doi: 10.1083/jcb.44.2.417
[20]
Heinlaan M, Angela I. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 2008, 71(7): 1308 doi: 10.1016/j.chemosphere.2007.11.047
[21]
Allahyari S, Mohammad H. Direct synthesis of dimethyl ether as a green fuel from syngas over nanostructured CuO-ZnO-Al2O3/HZSM-5 catalyst: influence of irradiation time on nanocatalyst properties and catalytic performance. J Power Sources, 2014, 272(6): 929
[22]
Mwankemwa B S, Matshisa J. Structural, morphological, optical and electrical properties of Schottky diodes based on CBD deposited ZnO:Cu nanorods. Superlattices Microstruct, 2017, 107(1): 163
[23]
Tiwari N, Lohar A, Kamal C, et al. Structural and magnetic studies on (Fe, Cu) co-doped ZnO nanocrystals. J Phys Chem Solids, 2017, 104(1): 198
[24]
Modwi A, Lemine O M, Marzook A, et al. Ferromagnetism at room temperature in Zn0.95 Cu0.05 nanoparticles synthesized by sol-gel method. Mater Lett, 2017, 194(2): 98
[25]
Liau L C K, Huang J S. Energy-level variations of Cu-doped ZnO fabricated through sol-gel processing. J Alloys Compd, 2017, 702(2): 153
[26]
Magdalane C M, Kaviyarasu K, Judith V J, et al. Photocatalytic activity of binary metal oxide nanocomposites of CeO2/CdO nanospheres: investigation of optical and antimicrobial activity. J Photochem Photobiol B, 2016, 163: 77 doi: 10.1016/j.jphotobiol.2016.08.013
[27]
Kaviyarasu K, Murmu P P, Kennedy J, et al. Structural, optical and magnetic investigation of Gd implanted CeO2 nanocrystals. Nucl Instr Meth B, 2017, 409: 147 doi: 10.1016/j.nimb.2017.02.055
[28]
Kasinathan K, Kennedy J, Manikandan E, et al. Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial application. Sci Rep, 2016, 6: 38064 doi: 10.1038/srep38064
[29]
Magdalane C M, Kaviyarasu K, Judith V J, et al. Photocatalytic degradation effect of malachite green and catalytic hydrogenation by UV-illuminated CeO2/CdO multilayered nanoplatelet arrays: investigation of antifungal and antimicrobial activities. J Photochem Photobiol B, 2017, 169: 110 doi: 10.1016/j.jphotobiol.2017.03.008
[30]
Kaviyarasu K, Mariappan A, Neyvasagam K, et al. Photocatalytic performance and antimicrobial activities of HAp-TiO2 nanocomposite thin films by sol-gel method. Surf Interf, 2017, 6: 247 doi: 10.1016/j.surfin.2016.10.002
[31]
Jesudoss S K, Judith V J, John K L, et al. Studies on the efficient dual performance of Mn1-xNixFe2O4 spinel nanoparticles in photodegradation and antibacterial activity. J Photochem Photobio B, 2016, 165: 121 doi: 10.1016/j.jphotobiol.2016.10.004
[32]
Kaviyarasu K, Raja A, Devarajan P A, et al. Structural elucidation and spectral characterizations of Co3O4 nanoflakes. Spectrochim Acta A, 2013, 114: 586 doi: 10.1016/j.saa.2013.04.126
[33]
Kaviyarasu K, Sajan D, Devarajan P A, et al. A rapid and versatile method for solvothermal synthesis of Sb2O3 nanocrystals under mild conditions. Appl Nanosci, 2013, 3(6): 529 doi: 10.1007/s13204-012-0156-y
[34]
Kaviyarasu K, Geetha N, Kanimozhi K, et al. In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of zinc oxide doped TiO2 nanocrystals: investigation of bio-medical application by chemical method. Mater Sci Eng C, 2017, 74: 325 doi: 10.1016/j.msec.2016.12.024
[35]
Angel E A, Judith V J, Kaviyarasu K, et al. Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: cytotoxicity effect of nanoparticles against HT-29 cancer cells. J Photochem Photobio B, 2016, 164: 352 doi: 10.1016/j.jphotobiol.2016.10.003
[36]
Kaviyarasu K, Magdalane C M, Anand K, et al. Synthesis and characterization studies of MgO:CuO nanocrystals by wet-chemical method. Spectrochim Acta A, 2015, 142: 405 doi: 10.1016/j.saa.2015.01.111
[37]
Kaviyarasu K, Devarajan P A. A convenient route to synthesize hexagonal pillar shaped ZnO nanoneedles via CTAB surfactant. Adv Mater Lett, 2013, 4: 582 doi: 10.5185/amlett
[38]
Magdalane C M, Kaviyarasu K, Vijaya J J, et al. Photocatalytic degradation effect of malachite green and catalytic hydrogenation by UV-illuminated CeO2/CdO multilayered nanoplatelet arrays: Investigation of antifungal and antimicrobial activities. J Photochem Photobiol B, 2017, 169: 110 doi: 10.1016/j.jphotobiol.2017.03.008
[39]
Kaviyarasu K, Kotsedi L, Aline S, et al. Photocatalytic activity of ZrO2 doped lead dioxide nanocomposites: investigation of structural and optical microscopy of RhB organic dye. Appl Surf Sci, 2016, 421: 234
[40]
Kaviyarasu K, Kanimozhi K, Matinise N, et al. Antiproliferative effects on human lung cell lines A549 activity of cadmium selenide nanoparticles extracted from cytotoxic effects: investigation of bio-electronic application. Mater Sci Eng C, 2017, 76: 1012 doi: 10.1016/j.msec.2017.03.210
[41]
Fuku X, Kaviyarasu K, Matinise N, et al. Punicalagin green functionalized Cu/Cu2O/ZnO/CuO nanocomposite for potential electrochemical transducer and catalyst. Nanoscale Res Lett, 2016, 11(1): 386 doi: 10.1186/s11671-016-1581-8
[42]
Maria M C, Kaviyarasu K, Judith V J, et al. Facile synthesis of heterostructured cerium oxide/yttrium oxide nanocomposite in UV light induced photocatalytic degradation and catalytic reduction: synergistic effect of antimicrobial studies. J Photochemi and Photobiol B, 2017, 173: 23 doi: 10.1016/j.jphotobiol.2017.05.024
[43]
Matinise N, Fuku X G, Kaviyarasu K, et al. ZnO nanoparticles via Moringa oleifera green synthesis: physical properties & mechanism of formation. Appl Surf Sci, 2017, 406: 339 doi: 10.1016/j.apsusc.2017.01.219
[44]
Kaviyarasu K, Maria M C, Manikandan E, et al. Well-aligned graphene oxide nanosheets decorated with zinc oxide nanocrystals for high performance photocatalytic application. Int J Nanosci, 2015, 14: 1550007 doi: 10.1142/S0219581X15500076
[45]
Kaviyarasu K, Manikandan E, Nuru Z Y, et al. Investigation on the structural properties of CeO2 nanofibers via CTAB surfactant. Mater Lett, 2015, 160: 61 doi: 10.1016/j.matlet.2015.07.099
[46]
Kaviyarasu K, Maria M C, Kanimozhi K, et al. Elucidation of photocatalysis, photoluminescence and antibacterial studies of ZnO thin films by spin coating method. J Photochem Photobiol B, 2017, 173: 466 doi: 10.1016/j.jphotobiol.2017.06.026
Fig. 1.  (Color online) X-ray diffraction patterns of (a) ZnO, (b) & (c) ZnO–CuO NPs at different concentrations prepared by the MSP method.

Fig. 2.  (Color online) FESEM images of ZnO–CuO nanocomposite of 3 : 1 M, 60 000 × magnification, sandwich like morphology. (b) Describing image of (a) and (c) EDX spectrum of ZnO–CuO nanocomposite synthesized by the MSP method where the inset represents the percentage of elemental composition.

Fig. 3.  (Color online) AFM images of the 2 : 1 M (roughness −3.8 nm RMS, at 300 °C), and 3 : 1 M (roughness −2.4 nm RMS, at 300 °C) ZnO–CuO nanocomposites respectively. (AFM image scans are 3 × 3 μm.)

Fig. 4.  (Color online) FTIR spectra of ZnO (a), and ZnO–CuO nanocomposite (2 : 1 M) (b) & (3 : 1 M) (c) synthesized by the MSP method.

Fig. 5.  (Color online) UV–vis optical absorption of ZnO NPS (a) ZnO–CuO nanocomposite (2 : 1 M) (b) & (3 : 1 M) (c) synthesized by the MSP method.

Fig. 6.  (Color online) Tauc plot ((αhν)2 versus the plot) for ZnO NPS (a), ZnO–CuO nanocomposite (2 : 1 M) (b) & (3 : 1 M) (c) synthesized by the MSP method.

Fig. 7.  (Color online) The photographic image of an inhibition zone produced by ZnO–CuO nanocomposite (3 : 1 M) for (a) Pseudomona saeruginosa, (b) Proteus mirabilis, (c) E.coli and (d) Staphylococcus aureus. (e) Bar graph representing the size of the zone of inhibition formed around each disc, loaded with test samples, indicating the antibacterial activity towards the same for ZnO–CuO nanocomposite 3 : 1 M.

Table 1.   Structural studies of (a) ZnO, (b) ZnO–CuO nanocomposite 2 : 1 M and (c) ZnO–CuO nanocomposite 3 : 1 M.

Samples Metal oxides 2θ (deg) hk1 FWHM (deg) d (Å) a (Å) b (Å) c (Å)
Std Expt
ZnO ZnO 36.2527 101 0.3428 2.4759 2.4755 3.246 0 5.2018
ZnO : CuO ZnO 36.2507 101 0.2460 2.4759 2.4781 3.256 0 5.2154
2 : 1 M CuO 35.5901 002 0.1968 2.5300 2.5225 4.661 3.462 5.1156
38.6308 111 0.3444 2.3130 2.3308
48.6877 202 0.2952 1.8660 1.8702
ZnO : CuO ZnO 36.2275 101 0.1968 2.4759 2.4796 3.246 0 5.2219
3 : 1 M CuO 35.4516 002 0.1476 2.5300 2.5252 4.672 3.439 5.1192
38.9001 200 0.2460 2.3230 2.3276
Samples Metal oxides c/a v3) D (nm) V (l03 nm3) Nu (106) l (Å) ε ( 10−3) δ (1014 lines/m2)
ZnO ZnO 1.6020 47.492 24 13.824 0.29 1.883 81.45 17.36
ZnO : CuO ZnO 1.6017 47.886 34 39.304 0.82 1.890 58.45 08.65
2 : 1 M CuO 1.0975 81.443 42 74.088 0.90 46.85 05.66
28 21.952 0.27 81.25 12.75
24 13.824 0.16 67.24 17.36
ZnO : CuO ZnO 1.6082 47.675 38 54.872 0.67 1.887 46.76 06.92
3 : 1 M CuO 1.0920 81.143 51 132.651 1.63 35.15 03.84
30 27.000 0.33 57.99 11.11
DownLoad: CSV

Table 2.   Bacterial analysis of ZnO-CuO nanocomposite 3 : 1 M.

Bacteria Zone of inhibition
diameter in mm (3 : 1) M
10 μL 20 μL
a) pseudomonas aeruginosa 7 16
b) Proteus mirabilis 15 20
c) E.coli 6 19
d) Staphylococcus aureus 12 16
DownLoad: CSV
[1]
Ravichandran K, Philominathan P, et al. Investigations on microstructural and optical properties of CdS films fabricated by a low-cost, simplified spray technique using perfume atomizer for solar cell applications. Solar Energy, 2008, 82(11): 1062 doi: 10.1016/j.solener.2008.04.012
[2]
Smith G. Clouds and Earth radiant energy system: an overview. Adv Space Res, 2004, 33(7): 1125 doi: 10.1016/S0273-1177(03)00739-7
[3]
Muzzio F J, Shinbrot T, Glasser B J. Powder technology in the pharmaceutical industry: the need to catch up fast. Powder Technol, 2002, 124(1): 1
[4]
Ayeshamariam A, Saravanakkumar D, Kashif M, et al. Analysis on the effect of ZnO on carbon nanotube by spray pyrolysis method. Mechan Adv Mater Modern Process, 2016, 2(1): 1 doi: 10.1186/s40759-016-0008-7
[5]
Patil P S. Versatility of chemical spray pyrolysis technique. Mater Chem Phys, 1999, 59(3): 185 doi: 10.1016/S0254-0584(99)00049-8
[6]
Shah N P, Lankaputhra W E V. Improving viability of Lactobacillus acidophilus and Bifidobacterium spp. in yogurt. Int Dairy J, 1997, 7(5): 349 doi: 10.1016/S0958-6946(97)00023-X
[7]
Pan Z Wei, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291(5510): 1947 doi: 10.1126/science.1058120
[8]
Wan Q, Li Q. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl Phys Lett, 2004, 84(18): 3654 doi: 10.1063/1.1738932
[9]
Zhang J T, Liu J F, Peng Q, et al. Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem Mater, 2006, 18(4): 867 doi: 10.1021/cm052256f
[10]
Saravanakumar K, Ravichandran K, Chandramohan R, et al. Investigation on simultaneous doping of Sn and F with ZnO nanopowders synthesized using a simple soft chemical route. Superlattices Microstruct, 2012, 52(3): 528 doi: 10.1016/j.spmi.2012.06.003
[11]
Bao C Y, Jin M, Lu R, et al. Surfactant-ligand co-assisted solvothermal technique for the synthesis of different-shaped CdS nanorod-based materials. J Solid State Chem, 2003, 175(2): 322 doi: 10.1016/S0022-4596(03)00298-6
[12]
Ray S C. Preparation of copper oxide thin film by the sol-gel-like dip technique and study of their structural and optical properties. Solar Energy Mater Solar cells, 2001, 68(3): 307
[13]
Ravichandran K, Saravanakumar K, Chandramohan R, et al. Influence of simultaneous doping of Cd and F on certain physical properties of ZnO nanopowders synthesized via a simple soft chemical route. Appl Surf Sci, 2012, 261(1): 405
[14]
Wagh M S, Patil L A, Tanay S, et al. Surface cupricated SnO2-ZnO thick films as a H2S gas sensor. Mater Chem Phys, 2004, 84(2): 228
[15]
Saravanan R, Karthikeyan S, Gupta V K et al. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater Sci Eng C, 2013, 33(1): 91 doi: 10.1016/j.msec.2012.08.011
[16]
Zhu Y W, Sow C H, Ting Yu T, et al. Co-synthesis of ZnO-CuO nanostructures by directly heating brass in air. Adv Funct Mater, 2006, 16(18): 2415 doi: 10.1002/(ISSN)1616-3028
[17]
Li B X, Wang Y F. Facile synthesis and photocatalytic activity of ZnO-CuO nanocomposite. Superlattices Microstruct, 2010, 47(5): 615 doi: 10.1016/j.spmi.2010.02.005
[18]
Kasemets K, Angela I. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicology in Vitro, 2009, 23(6): 1116 doi: 10.1016/j.tiv.2009.05.015
[19]
McKeel D W, Leonard J. Preparation and characterization of a plasma membrane fraction from isolated fat cells. J Cell Biology, 1970, 44(2): 417 doi: 10.1083/jcb.44.2.417
[20]
Heinlaan M, Angela I. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 2008, 71(7): 1308 doi: 10.1016/j.chemosphere.2007.11.047
[21]
Allahyari S, Mohammad H. Direct synthesis of dimethyl ether as a green fuel from syngas over nanostructured CuO-ZnO-Al2O3/HZSM-5 catalyst: influence of irradiation time on nanocatalyst properties and catalytic performance. J Power Sources, 2014, 272(6): 929
[22]
Mwankemwa B S, Matshisa J. Structural, morphological, optical and electrical properties of Schottky diodes based on CBD deposited ZnO:Cu nanorods. Superlattices Microstruct, 2017, 107(1): 163
[23]
Tiwari N, Lohar A, Kamal C, et al. Structural and magnetic studies on (Fe, Cu) co-doped ZnO nanocrystals. J Phys Chem Solids, 2017, 104(1): 198
[24]
Modwi A, Lemine O M, Marzook A, et al. Ferromagnetism at room temperature in Zn0.95 Cu0.05 nanoparticles synthesized by sol-gel method. Mater Lett, 2017, 194(2): 98
[25]
Liau L C K, Huang J S. Energy-level variations of Cu-doped ZnO fabricated through sol-gel processing. J Alloys Compd, 2017, 702(2): 153
[26]
Magdalane C M, Kaviyarasu K, Judith V J, et al. Photocatalytic activity of binary metal oxide nanocomposites of CeO2/CdO nanospheres: investigation of optical and antimicrobial activity. J Photochem Photobiol B, 2016, 163: 77 doi: 10.1016/j.jphotobiol.2016.08.013
[27]
Kaviyarasu K, Murmu P P, Kennedy J, et al. Structural, optical and magnetic investigation of Gd implanted CeO2 nanocrystals. Nucl Instr Meth B, 2017, 409: 147 doi: 10.1016/j.nimb.2017.02.055
[28]
Kasinathan K, Kennedy J, Manikandan E, et al. Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial application. Sci Rep, 2016, 6: 38064 doi: 10.1038/srep38064
[29]
Magdalane C M, Kaviyarasu K, Judith V J, et al. Photocatalytic degradation effect of malachite green and catalytic hydrogenation by UV-illuminated CeO2/CdO multilayered nanoplatelet arrays: investigation of antifungal and antimicrobial activities. J Photochem Photobiol B, 2017, 169: 110 doi: 10.1016/j.jphotobiol.2017.03.008
[30]
Kaviyarasu K, Mariappan A, Neyvasagam K, et al. Photocatalytic performance and antimicrobial activities of HAp-TiO2 nanocomposite thin films by sol-gel method. Surf Interf, 2017, 6: 247 doi: 10.1016/j.surfin.2016.10.002
[31]
Jesudoss S K, Judith V J, John K L, et al. Studies on the efficient dual performance of Mn1-xNixFe2O4 spinel nanoparticles in photodegradation and antibacterial activity. J Photochem Photobio B, 2016, 165: 121 doi: 10.1016/j.jphotobiol.2016.10.004
[32]
Kaviyarasu K, Raja A, Devarajan P A, et al. Structural elucidation and spectral characterizations of Co3O4 nanoflakes. Spectrochim Acta A, 2013, 114: 586 doi: 10.1016/j.saa.2013.04.126
[33]
Kaviyarasu K, Sajan D, Devarajan P A, et al. A rapid and versatile method for solvothermal synthesis of Sb2O3 nanocrystals under mild conditions. Appl Nanosci, 2013, 3(6): 529 doi: 10.1007/s13204-012-0156-y
[34]
Kaviyarasu K, Geetha N, Kanimozhi K, et al. In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of zinc oxide doped TiO2 nanocrystals: investigation of bio-medical application by chemical method. Mater Sci Eng C, 2017, 74: 325 doi: 10.1016/j.msec.2016.12.024
[35]
Angel E A, Judith V J, Kaviyarasu K, et al. Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: cytotoxicity effect of nanoparticles against HT-29 cancer cells. J Photochem Photobio B, 2016, 164: 352 doi: 10.1016/j.jphotobiol.2016.10.003
[36]
Kaviyarasu K, Magdalane C M, Anand K, et al. Synthesis and characterization studies of MgO:CuO nanocrystals by wet-chemical method. Spectrochim Acta A, 2015, 142: 405 doi: 10.1016/j.saa.2015.01.111
[37]
Kaviyarasu K, Devarajan P A. A convenient route to synthesize hexagonal pillar shaped ZnO nanoneedles via CTAB surfactant. Adv Mater Lett, 2013, 4: 582 doi: 10.5185/amlett
[38]
Magdalane C M, Kaviyarasu K, Vijaya J J, et al. Photocatalytic degradation effect of malachite green and catalytic hydrogenation by UV-illuminated CeO2/CdO multilayered nanoplatelet arrays: Investigation of antifungal and antimicrobial activities. J Photochem Photobiol B, 2017, 169: 110 doi: 10.1016/j.jphotobiol.2017.03.008
[39]
Kaviyarasu K, Kotsedi L, Aline S, et al. Photocatalytic activity of ZrO2 doped lead dioxide nanocomposites: investigation of structural and optical microscopy of RhB organic dye. Appl Surf Sci, 2016, 421: 234
[40]
Kaviyarasu K, Kanimozhi K, Matinise N, et al. Antiproliferative effects on human lung cell lines A549 activity of cadmium selenide nanoparticles extracted from cytotoxic effects: investigation of bio-electronic application. Mater Sci Eng C, 2017, 76: 1012 doi: 10.1016/j.msec.2017.03.210
[41]
Fuku X, Kaviyarasu K, Matinise N, et al. Punicalagin green functionalized Cu/Cu2O/ZnO/CuO nanocomposite for potential electrochemical transducer and catalyst. Nanoscale Res Lett, 2016, 11(1): 386 doi: 10.1186/s11671-016-1581-8
[42]
Maria M C, Kaviyarasu K, Judith V J, et al. Facile synthesis of heterostructured cerium oxide/yttrium oxide nanocomposite in UV light induced photocatalytic degradation and catalytic reduction: synergistic effect of antimicrobial studies. J Photochemi and Photobiol B, 2017, 173: 23 doi: 10.1016/j.jphotobiol.2017.05.024
[43]
Matinise N, Fuku X G, Kaviyarasu K, et al. ZnO nanoparticles via Moringa oleifera green synthesis: physical properties & mechanism of formation. Appl Surf Sci, 2017, 406: 339 doi: 10.1016/j.apsusc.2017.01.219
[44]
Kaviyarasu K, Maria M C, Manikandan E, et al. Well-aligned graphene oxide nanosheets decorated with zinc oxide nanocrystals for high performance photocatalytic application. Int J Nanosci, 2015, 14: 1550007 doi: 10.1142/S0219581X15500076
[45]
Kaviyarasu K, Manikandan E, Nuru Z Y, et al. Investigation on the structural properties of CeO2 nanofibers via CTAB surfactant. Mater Lett, 2015, 160: 61 doi: 10.1016/j.matlet.2015.07.099
[46]
Kaviyarasu K, Maria M C, Kanimozhi K, et al. Elucidation of photocatalysis, photoluminescence and antibacterial studies of ZnO thin films by spin coating method. J Photochem Photobiol B, 2017, 173: 466 doi: 10.1016/j.jphotobiol.2017.06.026
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 6194 Times PDF downloads: 359 Times Cited by: 0 Times

    History

    Received: 20 May 2017 Revised: 09 September 2017 Online: Accepted Manuscript: 11 November 2017Uncorrected proof: 24 January 2018Published: 01 March 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      D. Saravanakkumar, S. Sivaranjani, K. Kaviyarasu, A. Ayeshamariam, B. Ravikumar, S. Pandiarajan, C. Veeralakshmi, M. Jayachandran, M. Maaza. Synthesis and characterization of ZnO–CuO nanocomposites powder by modified perfume spray pyrolysis method and its antimicrobial investigation[J]. Journal of Semiconductors, 2018, 39(3): 033001. doi: 10.1088/1674-4926/39/3/033001 D. Saravanakkumar, S. Sivaranjani, K. Kaviyarasu, A. Ayeshamariam, B. Ravikumar, S. Pandiarajan, C. Veeralakshmi, M. Jayachandran, M. Maaza. Synthesis and characterization of ZnO–CuO nanocomposites powder by modified perfume spray pyrolysis method and its antimicrobial investigation[J]. J. Semicond., 2018, 39(3): 033001. doi: 10.1088/1674-4926/39/3/033001.Export: BibTex EndNote
      Citation:
      D. Saravanakkumar, S. Sivaranjani, K. Kaviyarasu, A. Ayeshamariam, B. Ravikumar, S. Pandiarajan, C. Veeralakshmi, M. Jayachandran, M. Maaza. Synthesis and characterization of ZnO–CuO nanocomposites powder by modified perfume spray pyrolysis method and its antimicrobial investigation[J]. Journal of Semiconductors, 2018, 39(3): 033001. doi: 10.1088/1674-4926/39/3/033001

      D. Saravanakkumar, S. Sivaranjani, K. Kaviyarasu, A. Ayeshamariam, B. Ravikumar, S. Pandiarajan, C. Veeralakshmi, M. Jayachandran, M. Maaza. Synthesis and characterization of ZnO–CuO nanocomposites powder by modified perfume spray pyrolysis method and its antimicrobial investigation[J]. J. Semicond., 2018, 39(3): 033001. doi: 10.1088/1674-4926/39/3/033001.
      Export: BibTex EndNote

      Synthesis and characterization of ZnO–CuO nanocomposites powder by modified perfume spray pyrolysis method and its antimicrobial investigation

      doi: 10.1088/1674-4926/39/3/033001
      More Information
      • Corresponding author: aismma786@gmail.com (A. Ayeshamariam)
      • Received Date: 2017-05-20
      • Revised Date: 2017-09-09
      • Available Online: 2018-03-01
      • Published Date: 2018-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return