SEMICONDUCTOR DEVICES

Cadmium sulfide thin films growth by chemical bath deposition

S. Hariech1, M. S. Aida2, , J. Bougdira3, M. Belmahi3, G. Medjahdi3, D. Genève3, N. Attaf1 and H. Rinnert3

+ Author Affiliations

 Corresponding author: (M.S. Aida) aida_salah2@yahoo.fr

PDF

Turn off MathJax

Abstract: Cadmium sulfide (CdS) thin films have been prepared by a simple technique such as chemical bath deposition (CBD). A set of samples CdS were deposited on glass substrates by varying the bath temperature from 55 to 75 °C at fixed deposition time (25 min) in order to investigate the effect of deposition temperature on CdS films physical properties. The determination of growth activation energy suggests that at low temperature CdS film growth is governed by the release of Cd2+ ions in the solution. The structural characterization indicated that the CdS films structure is cubic or hexagonal with preferential orientation along the direction (111) or (002), respectively. The optical characterization indicated that the films have a fairly high transparency, which varies between 55% and 80% in the visible range of the optical spectrum, the refractive index varies from 1.85 to 2.5 and the optical gap value of which can reach 2.2 eV. It can be suggested that these properties make these films perfectly suitable for their use as window film in thin films based solar cells.

Key words: thin filmschemical bathcadmium sulfidesolar cell



[1]
Wei C W, Hou S S. Preparation and optical properties of blue-emitting colloidal CdS nanocrystallines by the solvothermal process using poly (ethylene oxide) as the stabilizer. Colloid Polym Sci, 2007, 285: 1343 doi: 10.1007/s00396-007-1691-z
[2]
Cui H N, Xi S Q. The fabrication of dipped CdS and sputtered ITO thin films for photovoltaic solar cells. Thin Solid Films, 1996, 288: 325 doi: 10.1016/S0040-6090(96)08825-6
[3]
Acevedo A M. Thin film CdS/CdTe solar cells: research perspectives. Solar Energy, 2006, 80: 675 doi: 10.1016/j.solener.2005.10.008
[4]
Orgassa K, Rau U, Nguyen Q, et al. Role of the CdS buffer layer as an active optical element in Cu(In,Ga)Se2 thin-film solar cells. Prog Photovolt, 2002, 10: 457 doi: 10.1002/(ISSN)1099-159X
[5]
Ezema F I, Hile D D, Ezugwu S C, et al. Optical properties of CdS/CuS & CuS/CdS heterojunction thin films deposited by chemical bath deposition technique. J Ovon Res, 2010, 6: 99
[6]
Courel M, Andrade-Arvizu J A, Vigil-Galán O. Loss mechanisms influence on Cu2ZnSnS4/CdS-based thin film solar cell performance. Solid-State Electron, 2015, 111: 243 doi: 10.1016/j.sse.2015.05.038
[7]
Nazir A, Toma A, Shah N A, et al. Effect of Ag doping on opto-electrical properties of CdS thin films for solar cell application. J Alloys Compd, 2014, 609: 40 doi: 10.1016/j.jallcom.2014.04.144
[8]
Pradhan B, Sharma A K, Ray A K. Conduction studies on chemical bath-deposited nanocrystalline CdS thin films. J Cryst Growth, 2007, 304: 388 doi: 10.1016/j.jcrysgro.2007.03.041
[9]
Duan X, Huang Y, Agarwal R, et al. Single-nanowire electrically driven lasers. Nature, 2003, 421: 241 doi: 10.1038/nature01353
[10]
Kim W, Seol M, Kim H, et al. Freestanding CdS nanotube films as efficient photoanodes for photoelectrochemical cells. J Mater Chem A, 2013, 1: 9587 doi: 10.1039/c3ta12034a
[11]
Senthil K, Mangalaraj D, Narayandass S K, et al. Investigations on nitrogen ion implantation effects in vacuum evaporated CdS thin films using Raman scattering and X-ray diffraction studies. Physica B, 2001, 304: 175 doi: 10.1016/S0921-4526(01)00341-6
[12]
Kim D, Park Y, Kim M, et al. Optical and structural properties of sputtered CdS films for thin film solar cell applications. Mater Res Bull, 2015, 69: 78 doi: 10.1016/j.materresbull.2015.03.024
[13]
Baykula M C, Balcioglu A. Effect of seed layer on surface morphological, structural and optical properties of CdO thin films fabricated by an electrochemical deposition technique. Microelectron Eng, 2000, 51/52: 703 doi: 10.1016/S0167-9317(99)00534-1
[14]
Murali K R, Kumaresan S, Prince J J. Brush electrodeposited CdS films on low temperature substrates. Mater Lett, 2007, 61: 2613 doi: 10.1016/j.matlet.2006.10.026
[15]
Gibson P N, Ozsan M E, Lincot D, et al. Modelling of the structure of CdS thin films. Thin Solid Films, 2000, 361/362: 34 doi: 10.1016/S0040-6090(99)00833-0
[16]
Acharya K P, Mahalingam K, Ullrich B. Structural, compositional, and optoelectronic properties of thin-film CdS on p-GaAs prepared by pulsed-laser deposition. Thin Solid Films, 2010, 518: 1784 doi: 10.1016/j.tsf.2009.09.032
[17]
Hodes G. Chemical solution deposition of semiconductor films. New York: CRC Press, 2002
[18]
Cao M, Sun Y M, Wu J J, et al. Effects of cadmium salts on the structure, morphology and optical properties of acidic chemical bath deposited CdS thin films. J Alloys Compd, 2010, 508: 297 doi: 10.1016/j.jallcom.2010.08.066
[19]
Ziabari A A, Ghodsi F E. Growth, characterization and studying of sol–gel derived CdS nanoscrystalline thin films incorporated in polyethyleneglycol: effects of post-heat treatment. Solar Energy Mater Solar Cells, 2012, 105: 249 doi: 10.1016/j.solmat.2012.05.014
[20]
Jassim S A J, Rashid A A, Zumaila A, et al. Influence of substrate temperature on the structural, optical and electrical properties of CdS thin films deposited by thermal evaporation. Results Phys, 2013, 3: 173 doi: 10.1016/j.rinp.2013.08.003
[21]
Masterton W L, Slowinski E J, Stanitski C L. Chemical principle. CBS College Publishing, 1983
[22]
Çetinörgü E, Gümüş C, Esen R. Effects of deposition time and temperature on the optical properties of air-annealed chemical bath deposited CdS films. Thin Solid Films, 2006, 515: 1688 doi: 10.1016/j.tsf.2006.06.004
[23]
Lai S, Chang X, Fu C. Cadmium sulfide quantum dots modified by chitosan as fluorescence probe for copper (II) ion determination. Microchim Acta, 2009, 165: 39 doi: 10.1007/s00604-008-0094-2
[24]
Quiebrasa J N X, Puentea G C, Moralesa G R, et al. Properties of CdS thin films grown by CBD as a function of thiourea concentration. Solar Energy Mater Solar Cells, 2006, 90: 727 doi: 10.1016/j.solmat.2005.04.009
[25]
Mathew S, Joseph S A, Radhakrishnan P, et al. Shifting of fluorescence peak in CdS nanoparticles by excitation wavelength change. J Fluoresc, 2011, 21: 1479 doi: 10.1007/s10895-011-0833-3
[26]
Li W Y, Cai X, Chen Q L, et al. Influence of growth process on the structural, optical and electrical properties of CBD-CdS films. Mater Lett, 2005, 59: 1 doi: 10.1016/j.matlet.2004.04.008
[27]
Enriquez J P, Mathew X. Influence of the thickness on structural, optical and electrical properties of chemical bath deposited CdS thin films. Solar Energy Mater Solar Cells, 2003, 76: 313 doi: 10.1016/S0927-0248(02)00283-0
[28]
Ramaiah K S, Bhatnagar A K, Pilkington R D, et al. The effect of sulfur concentration on the properties of chemical bath deposited CdS thin films. J Mater Science: Mater Electron, 2000, 11: 269 doi: 10.1023/A:1008965420050
[29]
Salunkhe R R, Patil U M, Gujar T P, et al. Synthesis and characterization of cadmium hydroxide nano-nest by chemical route. Appl Surf Sci, 2009, 255: 3923 doi: 10.1016/j.apsusc.2008.10.035
[30]
Rusu M, Rumberg A, Schuler S, et al. Optimisation of the CBD CdS deposition parameters for ZnO/CdS/CuGaSe2/Mo solar cells. J Phys Chem Solids, 2003, 64: 1849 doi: 10.1016/S0022-3697(03)00067-2
[31]
Moualkia H, Hariech S, Aida M S. Structural and optical properties of CdS thin films grown by chemical bath deposition. Thin Solid Films, 2009, 518: 1259 doi: 10.1016/j.tsf.2009.04.067
Fig. 1.  (Color online) Diagram of the CBD process. CdS film is formed by a mechanism ion by ion (blue) or a cluster by cluster (red) or both simultaneously. Homogeneous precipitation in solution (green) and heterogeneous precipitation on the substrate (blue and red).

Fig. 2.  (Color online) Variations of CdS thin films thickness and growth rate as a function of bath temperatures.

Fig. 3.  (Color online) X-ray diffraction spectra of CdS films prepared at different bath temperatures.

Fig. 4.  (Color online) Growth rate and crystallite size variation as a function of bath temperature.

Fig. 5.  (Color online) Evolution of the growth rate and the strain with different bath temperatures.

Fig. 6.  (Color online) Deformation nature determination.

Fig. 7.  (Color online) Crystallite size and strain variation as a function of bath temperatures.

Fig. 8.  (Color online) Spectra of transmittance as a function of wavelength of CdS films deposited at different bath temperatures.

Fig. 9.  Variation of CdS film refractive index (at 600 nm) with the bath temperature.

Fig. 10.  (Color online) Dependence of the optical band gap and the Urbach energy according to the bath temperature.

Table 1.   Deposition parameters of different CdS samples.

Code of sample Molarity solutions (mol/L) Bath temperature (°C) Deposition time (min)
CdSO4·8/3H2 NH4OH CS(NH2)2
CdS 1 1 M 9.5 M 1 M 55 25
CdS 2 60
CdS 3 65
CdS 4 70
CdS 5 75
DownLoad: CSV

Table 2.   Dislocation density and number of crystallites per unit of surface, calculated for CdS films prepared at different bath temperatures.

Sample Bath temperature (°C) Density of dislocations (10−4lines/nm2) Number of crystallites/unit of surface (10−4nm−2)
CdS 1 55
CdS 2 60 15.25 220.53
CdS 3 65 25.507 626.86
CdS 4 70 1.92 9.107
CdS 5 75 1.657 5.91
DownLoad: CSV
[1]
Wei C W, Hou S S. Preparation and optical properties of blue-emitting colloidal CdS nanocrystallines by the solvothermal process using poly (ethylene oxide) as the stabilizer. Colloid Polym Sci, 2007, 285: 1343 doi: 10.1007/s00396-007-1691-z
[2]
Cui H N, Xi S Q. The fabrication of dipped CdS and sputtered ITO thin films for photovoltaic solar cells. Thin Solid Films, 1996, 288: 325 doi: 10.1016/S0040-6090(96)08825-6
[3]
Acevedo A M. Thin film CdS/CdTe solar cells: research perspectives. Solar Energy, 2006, 80: 675 doi: 10.1016/j.solener.2005.10.008
[4]
Orgassa K, Rau U, Nguyen Q, et al. Role of the CdS buffer layer as an active optical element in Cu(In,Ga)Se2 thin-film solar cells. Prog Photovolt, 2002, 10: 457 doi: 10.1002/(ISSN)1099-159X
[5]
Ezema F I, Hile D D, Ezugwu S C, et al. Optical properties of CdS/CuS & CuS/CdS heterojunction thin films deposited by chemical bath deposition technique. J Ovon Res, 2010, 6: 99
[6]
Courel M, Andrade-Arvizu J A, Vigil-Galán O. Loss mechanisms influence on Cu2ZnSnS4/CdS-based thin film solar cell performance. Solid-State Electron, 2015, 111: 243 doi: 10.1016/j.sse.2015.05.038
[7]
Nazir A, Toma A, Shah N A, et al. Effect of Ag doping on opto-electrical properties of CdS thin films for solar cell application. J Alloys Compd, 2014, 609: 40 doi: 10.1016/j.jallcom.2014.04.144
[8]
Pradhan B, Sharma A K, Ray A K. Conduction studies on chemical bath-deposited nanocrystalline CdS thin films. J Cryst Growth, 2007, 304: 388 doi: 10.1016/j.jcrysgro.2007.03.041
[9]
Duan X, Huang Y, Agarwal R, et al. Single-nanowire electrically driven lasers. Nature, 2003, 421: 241 doi: 10.1038/nature01353
[10]
Kim W, Seol M, Kim H, et al. Freestanding CdS nanotube films as efficient photoanodes for photoelectrochemical cells. J Mater Chem A, 2013, 1: 9587 doi: 10.1039/c3ta12034a
[11]
Senthil K, Mangalaraj D, Narayandass S K, et al. Investigations on nitrogen ion implantation effects in vacuum evaporated CdS thin films using Raman scattering and X-ray diffraction studies. Physica B, 2001, 304: 175 doi: 10.1016/S0921-4526(01)00341-6
[12]
Kim D, Park Y, Kim M, et al. Optical and structural properties of sputtered CdS films for thin film solar cell applications. Mater Res Bull, 2015, 69: 78 doi: 10.1016/j.materresbull.2015.03.024
[13]
Baykula M C, Balcioglu A. Effect of seed layer on surface morphological, structural and optical properties of CdO thin films fabricated by an electrochemical deposition technique. Microelectron Eng, 2000, 51/52: 703 doi: 10.1016/S0167-9317(99)00534-1
[14]
Murali K R, Kumaresan S, Prince J J. Brush electrodeposited CdS films on low temperature substrates. Mater Lett, 2007, 61: 2613 doi: 10.1016/j.matlet.2006.10.026
[15]
Gibson P N, Ozsan M E, Lincot D, et al. Modelling of the structure of CdS thin films. Thin Solid Films, 2000, 361/362: 34 doi: 10.1016/S0040-6090(99)00833-0
[16]
Acharya K P, Mahalingam K, Ullrich B. Structural, compositional, and optoelectronic properties of thin-film CdS on p-GaAs prepared by pulsed-laser deposition. Thin Solid Films, 2010, 518: 1784 doi: 10.1016/j.tsf.2009.09.032
[17]
Hodes G. Chemical solution deposition of semiconductor films. New York: CRC Press, 2002
[18]
Cao M, Sun Y M, Wu J J, et al. Effects of cadmium salts on the structure, morphology and optical properties of acidic chemical bath deposited CdS thin films. J Alloys Compd, 2010, 508: 297 doi: 10.1016/j.jallcom.2010.08.066
[19]
Ziabari A A, Ghodsi F E. Growth, characterization and studying of sol–gel derived CdS nanoscrystalline thin films incorporated in polyethyleneglycol: effects of post-heat treatment. Solar Energy Mater Solar Cells, 2012, 105: 249 doi: 10.1016/j.solmat.2012.05.014
[20]
Jassim S A J, Rashid A A, Zumaila A, et al. Influence of substrate temperature on the structural, optical and electrical properties of CdS thin films deposited by thermal evaporation. Results Phys, 2013, 3: 173 doi: 10.1016/j.rinp.2013.08.003
[21]
Masterton W L, Slowinski E J, Stanitski C L. Chemical principle. CBS College Publishing, 1983
[22]
Çetinörgü E, Gümüş C, Esen R. Effects of deposition time and temperature on the optical properties of air-annealed chemical bath deposited CdS films. Thin Solid Films, 2006, 515: 1688 doi: 10.1016/j.tsf.2006.06.004
[23]
Lai S, Chang X, Fu C. Cadmium sulfide quantum dots modified by chitosan as fluorescence probe for copper (II) ion determination. Microchim Acta, 2009, 165: 39 doi: 10.1007/s00604-008-0094-2
[24]
Quiebrasa J N X, Puentea G C, Moralesa G R, et al. Properties of CdS thin films grown by CBD as a function of thiourea concentration. Solar Energy Mater Solar Cells, 2006, 90: 727 doi: 10.1016/j.solmat.2005.04.009
[25]
Mathew S, Joseph S A, Radhakrishnan P, et al. Shifting of fluorescence peak in CdS nanoparticles by excitation wavelength change. J Fluoresc, 2011, 21: 1479 doi: 10.1007/s10895-011-0833-3
[26]
Li W Y, Cai X, Chen Q L, et al. Influence of growth process on the structural, optical and electrical properties of CBD-CdS films. Mater Lett, 2005, 59: 1 doi: 10.1016/j.matlet.2004.04.008
[27]
Enriquez J P, Mathew X. Influence of the thickness on structural, optical and electrical properties of chemical bath deposited CdS thin films. Solar Energy Mater Solar Cells, 2003, 76: 313 doi: 10.1016/S0927-0248(02)00283-0
[28]
Ramaiah K S, Bhatnagar A K, Pilkington R D, et al. The effect of sulfur concentration on the properties of chemical bath deposited CdS thin films. J Mater Science: Mater Electron, 2000, 11: 269 doi: 10.1023/A:1008965420050
[29]
Salunkhe R R, Patil U M, Gujar T P, et al. Synthesis and characterization of cadmium hydroxide nano-nest by chemical route. Appl Surf Sci, 2009, 255: 3923 doi: 10.1016/j.apsusc.2008.10.035
[30]
Rusu M, Rumberg A, Schuler S, et al. Optimisation of the CBD CdS deposition parameters for ZnO/CdS/CuGaSe2/Mo solar cells. J Phys Chem Solids, 2003, 64: 1849 doi: 10.1016/S0022-3697(03)00067-2
[31]
Moualkia H, Hariech S, Aida M S. Structural and optical properties of CdS thin films grown by chemical bath deposition. Thin Solid Films, 2009, 518: 1259 doi: 10.1016/j.tsf.2009.04.067
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4372 Times PDF downloads: 94 Times Cited by: 0 Times

    History

    Received: 19 July 2017 Revised: 07 September 2017 Online: Uncorrected proof: 24 January 2018Published: 01 March 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      S. Hariech, M. S. Aida, J. Bougdira, M. Belmahi, G. Medjahdi, D. Genève, N. Attaf, H. Rinnert. Cadmium sulfide thin films growth by chemical bath deposition[J]. Journal of Semiconductors, 2018, 39(3): 034004. doi: 10.1088/1674-4926/39/3/034004 S. Hariech, M. S. Aida, J. Bougdira, M. Belmahi, G. Medjahdi, D. Genève, N. Attaf, H. Rinnert. Cadmium sulfide thin films growth by chemical bath deposition[J]. J. Semicond., 2018, 39(3): 034004. doi: 10.1088/1674-4926/39/3/034004.Export: BibTex EndNote
      Citation:
      S. Hariech, M. S. Aida, J. Bougdira, M. Belmahi, G. Medjahdi, D. Genève, N. Attaf, H. Rinnert. Cadmium sulfide thin films growth by chemical bath deposition[J]. Journal of Semiconductors, 2018, 39(3): 034004. doi: 10.1088/1674-4926/39/3/034004

      S. Hariech, M. S. Aida, J. Bougdira, M. Belmahi, G. Medjahdi, D. Genève, N. Attaf, H. Rinnert. Cadmium sulfide thin films growth by chemical bath deposition[J]. J. Semicond., 2018, 39(3): 034004. doi: 10.1088/1674-4926/39/3/034004.
      Export: BibTex EndNote

      Cadmium sulfide thin films growth by chemical bath deposition

      doi: 10.1088/1674-4926/39/3/034004
      More Information
      • Corresponding author: (M.S. Aida) aida_salah2@yahoo.fr
      • Received Date: 2017-07-19
      • Revised Date: 2017-09-07
      • Available Online: 2018-03-01
      • Published Date: 2018-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return