SEMICONDUCTOR INTEGRATED CIRCUITS

A self-powered piezoelectric energy harvesting interface circuit with efficiency-enhanced P-SSHI rectifier

Lianxi Liu1, , Yanbo Pang1, Wenzhi Yuan1, Zhangming Zhu1, 2 and Yintang Yang1, 2

+ Author Affiliations

 Corresponding author: Lianxi Liu, lxliu@mail.xidian.edu.cn

PDF

Turn off MathJax

Abstract: The key to self-powered technique is initiative to harvest energy from the surrounding environment. Harvesting energy from an ambient vibration source utilizing piezoelectrics emerged as a popular method. Efficient interface circuits become the main limitations of existing energy harvesting techniques. In this paper, an interface circuit for piezoelectric energy harvesting is presented. An active full bridge rectifier is adopted to improve the power efficiency by reducing the conduction loss on the rectifying path. A parallel synchronized switch harvesting on inductor (P-SSHI) technique is used to improve the power extraction capability from piezoelectric harvester, thereby trying to reach the theoretical maximum output power. An intermittent power management unit (IPMU) and an output capacitor-less low drop regulator (LDO) are also introduced. Active diodes (AD) instead of traditional passive ones are used to reduce the voltage loss over the rectifier, which results in a good power efficiency. The IPMU with hysteresis comparator ensures the interface circuit has a large transient output power by limiting the output voltage ranges from 2.2 to 2 V. The design is fabricated in a SMIC 0.18 μm CMOS technology. Simulation results show that the flipping efficiency of the P-SSHI circuit is over 80% with an off-chip inductor value of 820 μH. The output power the proposed rectifier can obtain is 44.4 μW, which is 6.7× improvement compared to the maximum output power of a traditional rectifier. Both the active diodes and the P-SSHI help to improve the output power of the proposed rectifier. LDO outputs a voltage of 1.8 V with the maximum 90% power efficiency. The proposed P-SSHI rectifier interface circuit can be self-powered without the need for additional power supply.

Key words: self-poweredpiezoelectric energy harvestingP-SSHIpower managementactive diodeLDO



[1]
Hehn T, Hagedorn F, Maurath D, et al. A fully autonomous integrated interface circuit for piezoelectric harvesters. IEEE J Solid-State Circuits, 2012, 47(9): 2185 doi: 10.1109/JSSC.2012.2200530
[2]
Roundy S, Wright P, Rabaey J. Energy scavenging for wireless sensor networks with special focus on vibrations. Boston, MA: Kluwer Academic, 2003
[3]
Ottman G K, Hofmann H F, Bhatt A C, et al. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans Power Electron, 2002, 17(5): 669 doi: 10.1109/TPEL.2002.802194
[4]
Le T T, Han J, Von Jouanne A, et al. Piezoelectric micro-power generation interface circuits. IEEE J Solid-State Circuits, 2006, 41(6): 1411 doi: 10.1109/JSSC.2006.874286
[5]
Kim H S, Kim J H, Kim J. A review of piezoelectric energy harvesting based on vibration. Int J Prec Eng Manufact, 2011, 12(6): 1129 doi: 10.1007/s12541-011-0151-3
[6]
Du S, Jia Y, Do C D, et al. An efficient SSHI interface with increased input range for piezoelectric energy harvesting under variable conditions. IEEE J Solid-State Circuits, 2016, 51: 2729 doi: 10.1109/JSSC.2016.2594943
[7]
Rao Y, Arnold D P. An input-powered vibrational energy harvesting interface circuit with zero standby power. IEEE Trans Power Electron, 2011, 26(12): 3524 doi: 10.1109/TPEL.2011.2162530
[8]
Do X D, Nguyen H H, Han S K, et al. A self-powered high-efficiency rectifier with automatic resetting of transducer capacitance in piezoelectric energy harvesting systems. IEEE Trans Very Large Scale Integr Syst, 2015, 23(3): 444 doi: 10.1109/TVLSI.2014.2312532
[9]
Shim M, Kim J, Jeong J, et al. Self-powered 30 μW to 10 mW piezoelectric energy harvesting system with 9.09 ms/V maximum power point tracking time. IEEE J Solid-State Circuits, 2015, 50(10): 2367 doi: 10.1109/JSSC.2015.2456880
[10]
Lu C, Tsui C Y, Ki W H. Vibration energy scavenging system with maximum power tracking for micropower applications. IEEE Trans Very Large Scale Integr Syst, 2011, 19(11): 2109 doi: 10.1109/TVLSI.2010.2069574
[11]
Romani A, Filippi M, Tartagni M. Micropower design of a fully autonomous energy harvesting circuit for arrays of piezoelectric transducers. IEEE Trans Power Electron, 2014, 29(2): 729 doi: 10.1109/TPEL.2013.2257856
[12]
Guyomar D, Badel A, Lefeuvre E, et al. Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Trans Ultrason Ferroelectr Freq Control, 2005, 52(4): 584 doi: 10.1109/TUFFC.2005.1428041
[13]
Ramadass Y K, Chandrakasan A P. An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor. IEEE J Solid-State Circuits, 2010, 45(1): 189 doi: 10.1109/JSSC.2009.2034442
[14]
Lu S, Boussaid F. A highly efficient P-SSHI rectifier for piezoelectric energy harvesting. IEEE Trans Power Electron, 2015, 30(10): 1 doi: 10.1109/TPEL.2015.2433775
[15]
Dicken J, Mitcheson P D, Stoianov I, et al. Power-extraction circuits for piezoelectric energy harvesters in miniature and low-power applications. IEEE Trans Power Electron, 2012, 27(11): 4514 doi: 10.1109/TPEL.2012.2192291
[16]
Aktakka E E, Najafi K. A micro inertial energy harvesting platform with self-supplied power management circuit for autonomous wireless sensor nodes. IEEE J Solid-State Circuits, 2014, 49(9): 2017 doi: 10.1109/JSSC.2014.2331953
[17]
Shi G, Xia Y, Ye Y, et al. An efficient self-powered synchronous electric charge extraction interface circuit for piezoelectric energy harvesting systems. J Intell Mater Syst Struct, 2016, 27(16): 2160 doi: 10.1177/1045389X15624796
[18]
Peters C, Handwerker J, Maurath D, et al. A sub-500 mV highly efficient active rectifier for energy harvesting applications. IEEE Trans Circuits Syst I, 2011, 58(7): 1542 doi: 10.1109/TCSI.2011.2157739
[19]
Aloulou R, Peslouan P O L D, Mnif H, et al. A power management system for energy harvesting and wireless sensor networks application based on a novel charge pump circuit. Int J Electron, 2016, 103(5): 150715
[20]
Andersen T M, Krismer F, Kolar J W, et al. A feedforward controlled on-chip switched-capacitor voltage regulator delivering 10 W in 32 nm SOI CMOS. Solid-State Circuits Conference, 2015: 1
[21]
Miller S, Maceachern L. A nanowatt bandgap voltage reference for ultra-low power applications. IEEE International Symposium on Circuits and Systems, 2006: 648
[22]
Andreou C M, Koudounas S, Georgiou J. A novel wide-temperature-range, 3.9 ppm/°C CMOS bandgap reference circuit. IEEE J Solid-State Circuits, 2012, 47(2): 574 doi: 10.1109/JSSC.2011.2173267
[23]
Peng S Y, Liu L H, Chang P K, et al. A power-efficient reconfigurable output-capacitor-less low-drop-out regulator for low-power analog sensing front-end. IEEE Trans Circuits Systems I, 2017, 64(6): 1318 doi: 10.1109/TCSI.2016.2561638
[24]
Chong S S, Chan P K. A 0.9 μA quiescent current output-capacitorless LDO regulator with adaptive power transistors in 65-nm CMOS. IEEE Trans Circuits Systems I, 2013, 60(4): 1072 doi: 10.1109/TCSI.2012.2215392
[25]
Do X D, Ko Y H, Nguyen H H, et al. An efficient parallel SSHI rectifier for piezoelectric energy scavenging systems. 13th International Conference on Advanced Communication Technology (ICACT), 2011: 1394
[26]
Lu S, Boussaid F, Law M K. Efficient parallel-SSHI interface circuit for piezoelectric energy harvesting. New Circuits and Systems Conference, 2013: 1
[27]
Sanchez D A, Leicht J, Jodka E, et al. A 4 μW-to-1 mW parallel-SSHI rectifier for piezoelectric energy harvesting of periodic and shock excitations with inductor sharing, cold start-up and up to 681% power extraction improvement. IEEE International Solid-State Circuits Conference, 2016: 366
Fig. 1.  Equivalent circuit of a piezoelectric energy harvester.

Fig. 2.  Full bridge rectifier and associated waveforms.

Fig. 3.  Basic structure of the P-SSHI rectifier and operational waveforms.

Fig. 4.  Model of an active diode.

Fig. 5.  Structure of the proposed interface circuit.

Fig. 6.  The proposed P-SSHI active rectifier.

Fig. 7.  (a) Clock divider circuit (b) and its associated waves.

Fig. 8.  Schematics of comparators used in active diodes.

Fig. 9.  Schematic of (a) the hysteresis comparator and (b) its control signals.

Fig. 10.  Schematic of the proposed bandgap reference circuit.

Fig. 11.  Structure of the proposed cap-less LDO.

Fig. 12.  (Color online) Flipping efficiency of the proposed P-SSHI rectifier.

Fig. 13.  (Color online) Simulated output power of the proposed P-SSHI rectifier.

Fig. 14.  (Color online) (a) Reference voltage versus temperature. (b) 200 Monte Carlo simulation results.

Fig. 15.  (Color online) Simulated function of the proposed IPMU.

Fig. 16.  (Color online) Loop stability of the LDO with different loads.

Fig. 17.  (Color online) (a) Layout of the chip. (b) Layout of the core.

Table 1.   Overall power consumption of the interface circuit.

Stage Value (μW)
P-SSHI COMP5–COMP8 0.35
Active-full bridge AD1–AD4 1.6
IMPU CLK, HC, BGR, LDO 1.6
Total power loss 3.55
DownLoad: CSV

Table 2.   Performance comparison of the reported designs.

Parameter Process IP (μA) CP (nF) fP (Hz) ηF PO (μW) FOM: PO/PFB
Ref. [13] 0.35 μm CMOS 63 12 225 75% (LF = 820 μH) 47 4 ×
Ref. [14] Discrete 63 18 225 —(LF = 940 μH) 48 5.8 ×
Ref. [17] Discrete 1000 220 50 > 80% (LF = 1 mH) 3 ×
Ref. [25] CMOS 80 26 200 70% (LF = 400 μH) 71 4.5 ×
Ref. [26] Discrete 80 12 200 68% (LF = 22 μH) 120 3.6 ×
Ref. [27] 0.35 μm CMOS 14 9 229 94% (LF = 3.3 mH) 8.19 4.4 ×
This work 0.18 μm CMOS 50 17.5 225 > 80% (LF = 820 μH) 44.4 7.7 ×
DownLoad: CSV
[1]
Hehn T, Hagedorn F, Maurath D, et al. A fully autonomous integrated interface circuit for piezoelectric harvesters. IEEE J Solid-State Circuits, 2012, 47(9): 2185 doi: 10.1109/JSSC.2012.2200530
[2]
Roundy S, Wright P, Rabaey J. Energy scavenging for wireless sensor networks with special focus on vibrations. Boston, MA: Kluwer Academic, 2003
[3]
Ottman G K, Hofmann H F, Bhatt A C, et al. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans Power Electron, 2002, 17(5): 669 doi: 10.1109/TPEL.2002.802194
[4]
Le T T, Han J, Von Jouanne A, et al. Piezoelectric micro-power generation interface circuits. IEEE J Solid-State Circuits, 2006, 41(6): 1411 doi: 10.1109/JSSC.2006.874286
[5]
Kim H S, Kim J H, Kim J. A review of piezoelectric energy harvesting based on vibration. Int J Prec Eng Manufact, 2011, 12(6): 1129 doi: 10.1007/s12541-011-0151-3
[6]
Du S, Jia Y, Do C D, et al. An efficient SSHI interface with increased input range for piezoelectric energy harvesting under variable conditions. IEEE J Solid-State Circuits, 2016, 51: 2729 doi: 10.1109/JSSC.2016.2594943
[7]
Rao Y, Arnold D P. An input-powered vibrational energy harvesting interface circuit with zero standby power. IEEE Trans Power Electron, 2011, 26(12): 3524 doi: 10.1109/TPEL.2011.2162530
[8]
Do X D, Nguyen H H, Han S K, et al. A self-powered high-efficiency rectifier with automatic resetting of transducer capacitance in piezoelectric energy harvesting systems. IEEE Trans Very Large Scale Integr Syst, 2015, 23(3): 444 doi: 10.1109/TVLSI.2014.2312532
[9]
Shim M, Kim J, Jeong J, et al. Self-powered 30 μW to 10 mW piezoelectric energy harvesting system with 9.09 ms/V maximum power point tracking time. IEEE J Solid-State Circuits, 2015, 50(10): 2367 doi: 10.1109/JSSC.2015.2456880
[10]
Lu C, Tsui C Y, Ki W H. Vibration energy scavenging system with maximum power tracking for micropower applications. IEEE Trans Very Large Scale Integr Syst, 2011, 19(11): 2109 doi: 10.1109/TVLSI.2010.2069574
[11]
Romani A, Filippi M, Tartagni M. Micropower design of a fully autonomous energy harvesting circuit for arrays of piezoelectric transducers. IEEE Trans Power Electron, 2014, 29(2): 729 doi: 10.1109/TPEL.2013.2257856
[12]
Guyomar D, Badel A, Lefeuvre E, et al. Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Trans Ultrason Ferroelectr Freq Control, 2005, 52(4): 584 doi: 10.1109/TUFFC.2005.1428041
[13]
Ramadass Y K, Chandrakasan A P. An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor. IEEE J Solid-State Circuits, 2010, 45(1): 189 doi: 10.1109/JSSC.2009.2034442
[14]
Lu S, Boussaid F. A highly efficient P-SSHI rectifier for piezoelectric energy harvesting. IEEE Trans Power Electron, 2015, 30(10): 1 doi: 10.1109/TPEL.2015.2433775
[15]
Dicken J, Mitcheson P D, Stoianov I, et al. Power-extraction circuits for piezoelectric energy harvesters in miniature and low-power applications. IEEE Trans Power Electron, 2012, 27(11): 4514 doi: 10.1109/TPEL.2012.2192291
[16]
Aktakka E E, Najafi K. A micro inertial energy harvesting platform with self-supplied power management circuit for autonomous wireless sensor nodes. IEEE J Solid-State Circuits, 2014, 49(9): 2017 doi: 10.1109/JSSC.2014.2331953
[17]
Shi G, Xia Y, Ye Y, et al. An efficient self-powered synchronous electric charge extraction interface circuit for piezoelectric energy harvesting systems. J Intell Mater Syst Struct, 2016, 27(16): 2160 doi: 10.1177/1045389X15624796
[18]
Peters C, Handwerker J, Maurath D, et al. A sub-500 mV highly efficient active rectifier for energy harvesting applications. IEEE Trans Circuits Syst I, 2011, 58(7): 1542 doi: 10.1109/TCSI.2011.2157739
[19]
Aloulou R, Peslouan P O L D, Mnif H, et al. A power management system for energy harvesting and wireless sensor networks application based on a novel charge pump circuit. Int J Electron, 2016, 103(5): 150715
[20]
Andersen T M, Krismer F, Kolar J W, et al. A feedforward controlled on-chip switched-capacitor voltage regulator delivering 10 W in 32 nm SOI CMOS. Solid-State Circuits Conference, 2015: 1
[21]
Miller S, Maceachern L. A nanowatt bandgap voltage reference for ultra-low power applications. IEEE International Symposium on Circuits and Systems, 2006: 648
[22]
Andreou C M, Koudounas S, Georgiou J. A novel wide-temperature-range, 3.9 ppm/°C CMOS bandgap reference circuit. IEEE J Solid-State Circuits, 2012, 47(2): 574 doi: 10.1109/JSSC.2011.2173267
[23]
Peng S Y, Liu L H, Chang P K, et al. A power-efficient reconfigurable output-capacitor-less low-drop-out regulator for low-power analog sensing front-end. IEEE Trans Circuits Systems I, 2017, 64(6): 1318 doi: 10.1109/TCSI.2016.2561638
[24]
Chong S S, Chan P K. A 0.9 μA quiescent current output-capacitorless LDO regulator with adaptive power transistors in 65-nm CMOS. IEEE Trans Circuits Systems I, 2013, 60(4): 1072 doi: 10.1109/TCSI.2012.2215392
[25]
Do X D, Ko Y H, Nguyen H H, et al. An efficient parallel SSHI rectifier for piezoelectric energy scavenging systems. 13th International Conference on Advanced Communication Technology (ICACT), 2011: 1394
[26]
Lu S, Boussaid F, Law M K. Efficient parallel-SSHI interface circuit for piezoelectric energy harvesting. New Circuits and Systems Conference, 2013: 1
[27]
Sanchez D A, Leicht J, Jodka E, et al. A 4 μW-to-1 mW parallel-SSHI rectifier for piezoelectric energy harvesting of periodic and shock excitations with inductor sharing, cold start-up and up to 681% power extraction improvement. IEEE International Solid-State Circuits Conference, 2016: 366
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5352 Times PDF downloads: 179 Times Cited by: 0 Times

    History

    Received: 20 March 2017 Revised: 21 July 2017 Online: Uncorrected proof: 24 January 2018Accepted Manuscript: 01 March 2018Published: 01 April 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Lianxi Liu, Yanbo Pang, Wenzhi Yuan, Zhangming Zhu, Yintang Yang. A self-powered piezoelectric energy harvesting interface circuit with efficiency-enhanced P-SSHI rectifier[J]. Journal of Semiconductors, 2018, 39(4): 045002. doi: 10.1088/1674-4926/39/4/045002 L X Liu, Y B Pang, W Z Yuan, Z M Zhu, Y T Yang. A self-powered piezoelectric energy harvesting interface circuit with efficiency-enhanced P-SSHI rectifier[J]. J. Semicond., 2018, 39(4): 045002. doi: 10.1088/1674-4926/39/4/045002.Export: BibTex EndNote
      Citation:
      Lianxi Liu, Yanbo Pang, Wenzhi Yuan, Zhangming Zhu, Yintang Yang. A self-powered piezoelectric energy harvesting interface circuit with efficiency-enhanced P-SSHI rectifier[J]. Journal of Semiconductors, 2018, 39(4): 045002. doi: 10.1088/1674-4926/39/4/045002

      L X Liu, Y B Pang, W Z Yuan, Z M Zhu, Y T Yang. A self-powered piezoelectric energy harvesting interface circuit with efficiency-enhanced P-SSHI rectifier[J]. J. Semicond., 2018, 39(4): 045002. doi: 10.1088/1674-4926/39/4/045002.
      Export: BibTex EndNote

      A self-powered piezoelectric energy harvesting interface circuit with efficiency-enhanced P-SSHI rectifier

      doi: 10.1088/1674-4926/39/4/045002
      Funds:

      Project supported by the National Natural Science Foundation of China (Nos. 61574103, U1709218) and the Key Research and Development Program of Shaanxi Province (No. 2017ZDXM-GY-006).

      More Information
      • Corresponding author: lxliu@mail.xidian.edu.cn
      • Received Date: 2017-03-20
      • Revised Date: 2017-07-21
      • Published Date: 2018-04-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return