REVIEWS

Preparation and application of carbon nanotubes flexible sensors

Shuo Li1, Xiao Feng1, Hao Liu1, Kai Wang1, , Yun-Ze Long2, and S. Ramakrishna3

+ Author Affiliations

 Corresponding author: Kai Wang, Email: wkwj888@163.com; Yun-Ze Long, Email: wkwj888@163.com

PDF

Turn off MathJax

Abstract: Based on the good extensibility and conductivity, the flexible sensors (FSs) have a wide range of applications in the field of the electrochemical energy storage and variable stress sensors, which causes that the preparation of FSs also become a hot spot of research. Among the materials for preparing the FSs, the flexible carbon matrix composites (FCMCs) have become the widely used material since the good performance in the properties of electrochemistry and mechanics, which could be divided into three types: the carbon nanofibers (CNFs), the carbon nanospheres (CNSs) and the carbon nanotubes (CNTs). Compared with CNFs and CNSs, the CNTs wrapped by the polydimethylsiloxane (PDMS) have the advantages of the excellent extensibility and electrochemical stability. Therefore, the CNTs flexible sensor (CFS) could be well used in the field of the FSs. The purpose of this review is summarizing the preparation methods and application fields of CFS and proposing the research direction of CFS in the future. In this paper, two methods for fabricating the CFS have been designed by consulting the methods mentioned in the literature in recent years, and the advantages and disadvantages between the two methods have been explained. The application fields of CFS in recent years are enumerated, and the conclusion that the application fields of CFS are very wide is drawn. At the end of this paper, the review concludes with an overview of key remaining challenges in the application fields of the CFS.

Key words: CNTsPDMSCFSpreparation methodsapplication fields



[1]
Wang K, Li L W, Lan Y, et al. Application research of chaotic carrier frequency modulation technology in two-stage matrix converter. Math Probl Eng, 2019, 2019(1), 1 doi: 10.1155/2019/2614327
[2]
Wang K, Zhou S Z, Zhou Y T, et al. Synthesis of porous carbon by activation method and its electrochemical performance. Int J Electrochem Sci, 2018, 13(11), 10766 doi: 10.20964/2018.11.30
[3]
Long Y Z, Zhang L J, Chen Z J, et al. Electronic transport in single polyaniline and polypyrrole microtubes. Phys Rev B, 2005, 71(16), 165412 doi: 10.1103/PhysRevB.71.165412
[4]
Wang K, Li L W, Wen X, et al. Electrodeposition synthesis of PANI/MnO2/graphene composite materials and its electrochemical performance. Int J Electrochem Sci, 2017, 12(9), 8306 doi: 10.20964/2017.09.06
[5]
Wang K, Pang J B, Li L W, et al. Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation. Front Chem Sci Eng, 2018, 12(3), 376 doi: 10.1007/s11705-018-1705-z
[6]
Qiu H J, Song W Z, Wang X X, et al. A Calibration-free self-powered sensor for vital sign monitoring and finger tap communication based on wearable triboelectric nanogenerator. Nano Energy, 2019, 58(2019), 536 doi: 10.1016/j.nanoen.2019.01.069
[7]
Wang X X, Song W Z, You M H, et al. Bionic single electrode electronic skin unit based on piezoelectric nanogenerator. ACS Nano, 2018, 12(8), 8588 doi: 10.1021/acsnano.8b04244
[8]
Chien C J, Deora S S, Chang P C, et al. Flexible symmetric supercapacitors based on TiO2 and carbon nanotubes. IEEE Trans Nanotechnol, 2011, 10(4), 706 doi: 10.1109/TNANO.2010.2069569
[9]
Chen H, Iyer A R, Harley R G, et al. Dynamic grid power routing using controllable network transformers (CNTs) with decoupled closed-loop controller. IEEE Trans Ind Appl, 2015, 51(3), 2361 doi: 10.1109/TIA.2014.2379917
[10]
Tabib-Azar M, Xie Y. Sensitive NH3OH and HCl gas sensors using self-aligned and self-welded multiwalled carbon nanotubes. IEEE Sens J, 2007, 7(9), 1435 doi: 10.1109/ICSENS.2005.1597949
[11]
Shahshahan M, Keinänen P, Vuorinen J. The effect of ultrasonic dispersion on the surface chemistry of carbon nanotubes in the Jeffamine D-230 polyetheramine medium. IEEE Trans Nanotechnol, 2017, 16(5), 741 doi: 10.1109/TNANO.2017.2691904
[12]
Cheon J, Choi S, Heo Y J, et al. Fabrication of n-type CNT field-effect transistor using energy band engineering layer between CNT and electrode. IEEE Electron Device Lett, 2013, 34(11), 1436 doi: 10.1109/LED.2013.2282394
[13]
Long Y Z, Li M M, Sui W M, et al. Electrical, dielectric and surface wetting properties of multi-walled carbon nanotubes/nylon-6 nanocomposites. Chin Phys B, 2009, 18(3), 1221 doi: 10.1088/1674-1056/18/3/063
[14]
Zhang Z, Delgado-Frias J G. Carbon nanotube SRAM design with metallic CNT or removed metallic CNT tolerant approaches. IEEE Trans Nanotechnol, 2012, 11(4), 788 doi: 10.1109/TNANO.2012.2197636
[15]
Zheng J, Sun B, Lonf Y Z, et al. Fabrication of nanofibers by low-voltage near-field electrospinning. Adv Mater Res, 2012, 486(1), 60 doi: 10.4028/www.scientific.net/AMR.486.60
[16]
Yang Z T, Xu J, Wang J Q, et al. Design and preparation of self-driven BSA surface imprinted tubular carbon nanofibers and their specific adsorption performance. Chem Eng J, 2019, 373(2019), 923 doi: 10.1016/j.cej.2019.05.129
[17]
Gyulassy A, Knoll A, Lau K C, et al. Interstitial and interlayer ion diffusion geometry extraction in graphitic nanosphere battery materials. IEEE Trans Visual Comput Graph, 2016, 22(1), 916 doi: 10.1109/TVCG.2015.2467432
[18]
Park G W, Yoo J B, Kim G J. Fabrication of spherical CNT skeins formed by self-entangled fibers from hollow type mesoporous silica microcapsules. J Ind Eng Chem, 2019, 76(2019), 457 doi: 10.1016/j.jiec.2019.04.013
[19]
Dubin R A, Callegari G, Kohn J, et al. Carbon nanotube fibers are compatible with mammalian cells and neurons. IEEE Trans NanoBiosci, 2008, 7(1), 11 doi: 10.1109/TNB.2008.2000144
[20]
Lee Y C, Li M H, Cheng Y T, et al. Electroplated Ni-CNT nanocomposite for micromechanical resonator applications. IEEE Electron Device Lett, 2012, 33(6), 872 doi: 10.1109/LED.2012.2190131
[21]
Li H, Evans E J Jr, Mullins C B, et al. Ethanol decomposition on Pd-Au alloy catalysts. J Phys Chem C, 2018, 122(38), 22024 doi: 10.1021/acs.jpcc.8b08150
[22]
Li H, Henkelman G. Dehydrogenation selectivity of ethanol on close-packed transition metal surfaces: a computational study of monometallic, Pd/Au, and Rh/Au catalysts. J Phys Chem C, 2017, 121(49), 27504 doi: 10.1021/acs.jpcc.7b09953
[23]
Li H, Shin K, Henkelman G. Effects of ensembles, ligand, and strain on adsorbate binding to alloy surfaces. J Chem Phys, 2018, 149(17), 1 doi: 10.1063/1.5053894
[24]
Li H, Luo L, Kunal P, et al. Oxygen reduction reaction on classically immiscible bimetallics: a case study of RhAu. J Phys Chem C, 2018, 122(5), 2712 doi: 10.1021/acs.jpcc.7b10974
[25]
Hwang Y H, Seo D, Roy M, et al. Capillary flow in PDMS cylindrical microfluidic channel using 3-D printed mold. J Microelectromechan Syst, 2016, 25(2), 238 doi: 10.1109/JMEMS.2016.2521858
[26]
Guo H H, Lou L, Chen X D, et al. PDMS-coated piezoresistive NEMS diaphragm for chloroform vapor detection. IEEE Electron Device Lett, 2012, 33(7), 1078 doi: 10.1109/LED.2012.2195152
[27]
Ryu D, Castaño N. Multivariate characterization of light emission from ZnS: Cu-PDMS self-sensing composites under cyclic tensile strains. IEEE Sens Lett, 2018, 2(2), 1 doi: 10.1109/LSENS.2018.2838019
[28]
Zhu Y B, Yang B, Liu J Q, et al. An integrated flexible harvester coupled triboelectric and piezoelectric mechanisms using PDMS/MWCNT and PVDF. J Microelectromechan Syst, 2015, 24(3), 513 doi: 10.1109/JMEMS.2015.2404037
[29]
Liao H Y, Ho J R, Chang-Jian S K. Fabrication of carbon nanotube field-emission cathodes by laser-induced transfer of carbon nanotubes and silver paste. J Display Technol, 2014, 10(12), 1083 doi: 10.1109/JDT.2014.2345554
[30]
Binesh A R, Kamali R. Effects of chirality on single-file water permeability and diffusivity through single wall carbon nanotubes. Micro Nano Lett, 2017, 12(2), 109 doi: 10.1049/mnl.2016.0384
[31]
Zhang Q R, Han Y, Wu L C. Influence of electrostatic field on the adsorption of phenol on single-walled carbon nanotubes: A study by molecular dynamics simulation. Chem Eng J, 2019, 363(1), 278 doi: 10.1016/j.cej.2019.01.146
[32]
Chen R M, Liang J, Lee J, et al. Variability study of MWCNT local interconnects considering defects and contact resistances—Part I: pristine MWCNT. IEEE Trans Electron Devices, 2018, 65(11), 4955 doi: 10.1109/TED.2018.2868421
[33]
Nguyen V M, Yang I, Jung Y, et al. Resonance raman study of I2-intercalated single-walled carbon nanotubes. IEEE Trans Nanotechnol, 2007, 6(1), 126 doi: 10.1109/TNANO.2006.886784
[34]
Tsai T J, Wang P C. Preparation and characterization of aqueous dispersions based on single-walled carbon nanotubes functionalized with carboxyl anthracenes. The 12th International Microsystems, Packaging, Assembly and Circuits Technology Conference, 2017, 299
[35]
Tang Y C, Zhao Z B, Hu H, et al. Highly stretchable and ultrasensitive strain sensor based on reduced graphene oxide microtubes-elastomer composite. ACS Appl Mater Interfaces, 2015, 7(49), 27432 doi: 10.1021/acsami.5b09314
[36]
Jeong Y R, Park H, Jin S W, et al. Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv Funct Mater, 2015, 25(27), 4228 doi: 10.1002/adfm.201501000
[37]
Jacimovic J, Felberbaum L. Electro-mechanical properties and welding characteristics of Ag/MoS2, Ag/WS2, Ag/CNTs and Ag/CdO materials for high-DC current contact applications. The 27th International Conference on Electrical Contacts, 2014, 132
[38]
Chang C H, Chien C H. Functionalized single-walled carbon-nanotube-blended P3HT-based thin-film transistors with multiwalled carbon-nanotube source and drain electrodes. IEEE Electron Device Lett, 2011, 32(10), 1457 doi: 10.1109/LED.2011.2163054
[39]
Ilarion E, Spiridon S I, Monea B F. Comparative study of gas sensing microsensors based on sulfonated CNTs and CNTs/polyaniline mixture. International Conference and Exposition on Electrical and Power Engineering, 2016, 65
[40]
Ghodrati M, Farmani A, Mir A. Nanoscale sensor-based tunneling carbon nanotube transistor for toxic gases detection: a first-principle study. IEEE Sens J, 2019, 19(17), 7373 doi: 10.1109/JSEN.2019.2916850
[41]
Sha L N, Gao P, Wu T T, et al. Chemical Ni-C bonding in Ni-carbon nanotube composite by a microwave welding method and its induced high-frequency radar frequency electromagnetic wave absorption. ACS Appl Mater Interfaces, 2017, 9(46), 40412 doi: 10.1021/acsami.7b07136
[42]
Wu L C, Han Y, Zhang Q R, et al. Effect of external electric field on nanobubbles at the surface of hydrophobic particles during air flotation. RSC Adv, 2019, 9(4), 1792 doi: 10.1039/C8RA08935C
[43]
Hu C F, Lin C M, Fang W. Integration of Pdms-infiltrated CNTs and Si bulk-micromachining for monolithic physical sensors application. The 17th International Conference on Solid-State Sensors, Actuators and Microsystems, 2013, 1565
[44]
Liang J, Chen R M, Ramos R, et al. Investigation of Pt-salt-doped-standalone-multiwall carbon nanotubes for on-chip interconnect applications. IEEE Trans Electron Devices, 2019, 66(5), 2346 doi: 10.1109/TED.2019.2901658
[45]
Silvestri C, Picciafoco P, Morana B, et al. Electro-thermal simulation and characterization of vertically aligned CNTs directly grown on a suspended microhotplate for thermal management applications. IEEE Sens, 2014, 2014(1), 827 doi: 10.1109/ICSENS.2014.6985127
[46]
Jung H C, Moon J H, Baek D H, et al. CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring. IEEE Trans Biomed Eng, 2012, 59(5), 1472 doi: 10.1109/TBME.2012.2190288
[47]
Rezaei B, Irannejad N, Ensafi A A, et al. Application of modified carbon quantum dots/multiwall carbon nanotubes/pencil graphite electrode for electrochemical determination of dextromethorphan. IEEE Sens J, 2016, 16(8), 2219 doi: 10.1109/JSEN.2016.2517005
[48]
Xie S X, Gao F Q, Patel S C, et al. Clinically relevant CNT dispersions with exceptionally high dielectric properties for microwave theranostic applications. IEEE Trans Biomed Eng, 2014, 61(11), 2718 doi: 10.1109/TBME.2014.2326398
[49]
Yang Y P, Luo C Z, Jia J J, et al. A wrinkled Ag/CNTs-PDMS composite film for a high-performance flexible sensor and its applications in human-body single monitoring. Nanamaterials, 2019, 9(6), 1 doi: 10.3390/nano9060850
Fig. 1.  Structure characterization of the CNFs. (a) Image of the CNFs under the SEM. (b) Image of the CNFs under the TEM. (Reproduced with permission from Ref. [15].)

Fig. 2.  Structure characterization of the CNSs. (a) Image of the CNSs under the SEM. (b) Image of the CNSs under the TEM. (Reproduced with permission from Ref. [18].)

Fig. 3.  Theory model of the CNTs.

Fig. 4.  Structure characterization of the CNTs. (Reproduced with permission from Ref. [29].)

Fig. 5.  Raman spectra of pristine (thin solid), I2-intercalated (thick solid), and deintercalated (dashed) SWNTs in the low Raman shift range taken by: (a) the 514.5-nm line of an Ar-ion laser and by (b) the 647.1-nm line of Kr-ion laser. (Reproduced with permission from Ref. [33].)

Fig. 6.  (Color online) UV–vis spectroscopy of SWCNT-3 with 9 anthracene carboxylic acid in DI water. (Reproduced with permission from Ref. [34].)

Fig. 7.  (Color online) Fabrication steps of the RG/PDMS composite flexible sensor. (Reproduced with permission from Ref. [35].)

Fig. 8.  Schematic of the process of CVD method of preparing the GF/PDMS strain sensors. (Reproduced with permission from Ref. [36].)

Fig. 9.  (Color online) (a) Respective cyclic voltammograms of TiO2 nanotube supercapacitor, PEDOT–MWNT film supercapacitor and TiO2 nanotube + PEDOT–MWNT film supercapacitor in 1 M H2SO4 aqueous electrolyte. (b) Nyquist plots of TiO2 nanotube supercapacitor, PEDOT–MWNT film supercapacitor, and TiO2 nanotube + PEDOT–MWNT film supercapacitor from high frequency to low frequency. (Reproduced with permission from Ref. [8].)

Fig. 10.  (Color online) Temperature dependence of resistivity of several materials. (Reproduced with permission from Ref. [37].)

Fig. 11.  (Color online) (a) The values of contact resistance. (b) Characteristics of drain current versus gate voltage of transistors with a P3HT or F-SWCNT-P3HT channel and gold or MWCNT S/Ds. (Reproduced with permission from Ref. [38].)

Fig. 12.  (Color online) Resistance evolution of resulting structures as a function of gas concentrations. (a) CO. (b) CO2. (c) NH3. (Reproduced with permission from Ref. [39].)

Fig. 13.  (Color online) Two-dimensional circuit model for ballistic CNTFET. (Reproduced with permission from Ref. [40].)

Fig. 14.  (Color online) Drain-source current diagram versus dielectric constant. (Reproduced with permission from Ref. [40].)

Fig. 15.  (Color online) Transport features. (a) Sulfur Dioxide. (b) Acetonitrile. (c) Sarin Gas. (d) Carbonyl Chloride at logarithmic scale for VDS = 0.2, 0.4 V. (Reproduced with permission from Ref. [40].)

Fig. 16.  (Color online) (a) and (c) Reflection losses of raw CNTs and Ni with 2−5 mm thickness. (b) and (d) Complex permittivity ε and permeability μ of the raw CNTs and Ni. (Reproduced with permission from Ref. [41].)

Table 1.   Several equipment and specification in the hydrothermal auxiliary method.

EquipmentSpecification
Copper mesh8 cm of length
3 cm of width
80 of mesh number
50 μm of copper diameter
Hydrochloric acid/acetone solution1/5 of volume ratio of hydrochloric acid/acetone
Mixed solution of PDMS30/10/1 of mass ratio of n-hexane/PDMS monomer/curing agent
FeCl3/HCl solution0.5 mol/L of amount of the substance of FeCl3
0.5 mol/L of amount of the substance of HCl
DownLoad: CSV

Table 2.   Several equipment and specification in the method of CVD.

EquipmentSpecification
Nickel foam template2 × 2 cm2 of size
Glass slide3 × 20 mm2 of size of the rectangular shape
FGF/isopropyl alcohol (IPA) solution4.9 mg/ml of the concentration
Galinstan eutectic alloy68.5%/21.5%/10% of atomic percentage of Ga/In/Sn
DownLoad: CSV

Table 3.   Comparison between hydrothermal auxiliary method and CVD method.

AspectHydrothermal auxiliary methodCVD method
Time (h)12 26
Steps number137
Equipment number1414
Complexity degreeNormalHard
Reference3536
DownLoad: CSV
[1]
Wang K, Li L W, Lan Y, et al. Application research of chaotic carrier frequency modulation technology in two-stage matrix converter. Math Probl Eng, 2019, 2019(1), 1 doi: 10.1155/2019/2614327
[2]
Wang K, Zhou S Z, Zhou Y T, et al. Synthesis of porous carbon by activation method and its electrochemical performance. Int J Electrochem Sci, 2018, 13(11), 10766 doi: 10.20964/2018.11.30
[3]
Long Y Z, Zhang L J, Chen Z J, et al. Electronic transport in single polyaniline and polypyrrole microtubes. Phys Rev B, 2005, 71(16), 165412 doi: 10.1103/PhysRevB.71.165412
[4]
Wang K, Li L W, Wen X, et al. Electrodeposition synthesis of PANI/MnO2/graphene composite materials and its electrochemical performance. Int J Electrochem Sci, 2017, 12(9), 8306 doi: 10.20964/2017.09.06
[5]
Wang K, Pang J B, Li L W, et al. Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation. Front Chem Sci Eng, 2018, 12(3), 376 doi: 10.1007/s11705-018-1705-z
[6]
Qiu H J, Song W Z, Wang X X, et al. A Calibration-free self-powered sensor for vital sign monitoring and finger tap communication based on wearable triboelectric nanogenerator. Nano Energy, 2019, 58(2019), 536 doi: 10.1016/j.nanoen.2019.01.069
[7]
Wang X X, Song W Z, You M H, et al. Bionic single electrode electronic skin unit based on piezoelectric nanogenerator. ACS Nano, 2018, 12(8), 8588 doi: 10.1021/acsnano.8b04244
[8]
Chien C J, Deora S S, Chang P C, et al. Flexible symmetric supercapacitors based on TiO2 and carbon nanotubes. IEEE Trans Nanotechnol, 2011, 10(4), 706 doi: 10.1109/TNANO.2010.2069569
[9]
Chen H, Iyer A R, Harley R G, et al. Dynamic grid power routing using controllable network transformers (CNTs) with decoupled closed-loop controller. IEEE Trans Ind Appl, 2015, 51(3), 2361 doi: 10.1109/TIA.2014.2379917
[10]
Tabib-Azar M, Xie Y. Sensitive NH3OH and HCl gas sensors using self-aligned and self-welded multiwalled carbon nanotubes. IEEE Sens J, 2007, 7(9), 1435 doi: 10.1109/ICSENS.2005.1597949
[11]
Shahshahan M, Keinänen P, Vuorinen J. The effect of ultrasonic dispersion on the surface chemistry of carbon nanotubes in the Jeffamine D-230 polyetheramine medium. IEEE Trans Nanotechnol, 2017, 16(5), 741 doi: 10.1109/TNANO.2017.2691904
[12]
Cheon J, Choi S, Heo Y J, et al. Fabrication of n-type CNT field-effect transistor using energy band engineering layer between CNT and electrode. IEEE Electron Device Lett, 2013, 34(11), 1436 doi: 10.1109/LED.2013.2282394
[13]
Long Y Z, Li M M, Sui W M, et al. Electrical, dielectric and surface wetting properties of multi-walled carbon nanotubes/nylon-6 nanocomposites. Chin Phys B, 2009, 18(3), 1221 doi: 10.1088/1674-1056/18/3/063
[14]
Zhang Z, Delgado-Frias J G. Carbon nanotube SRAM design with metallic CNT or removed metallic CNT tolerant approaches. IEEE Trans Nanotechnol, 2012, 11(4), 788 doi: 10.1109/TNANO.2012.2197636
[15]
Zheng J, Sun B, Lonf Y Z, et al. Fabrication of nanofibers by low-voltage near-field electrospinning. Adv Mater Res, 2012, 486(1), 60 doi: 10.4028/www.scientific.net/AMR.486.60
[16]
Yang Z T, Xu J, Wang J Q, et al. Design and preparation of self-driven BSA surface imprinted tubular carbon nanofibers and their specific adsorption performance. Chem Eng J, 2019, 373(2019), 923 doi: 10.1016/j.cej.2019.05.129
[17]
Gyulassy A, Knoll A, Lau K C, et al. Interstitial and interlayer ion diffusion geometry extraction in graphitic nanosphere battery materials. IEEE Trans Visual Comput Graph, 2016, 22(1), 916 doi: 10.1109/TVCG.2015.2467432
[18]
Park G W, Yoo J B, Kim G J. Fabrication of spherical CNT skeins formed by self-entangled fibers from hollow type mesoporous silica microcapsules. J Ind Eng Chem, 2019, 76(2019), 457 doi: 10.1016/j.jiec.2019.04.013
[19]
Dubin R A, Callegari G, Kohn J, et al. Carbon nanotube fibers are compatible with mammalian cells and neurons. IEEE Trans NanoBiosci, 2008, 7(1), 11 doi: 10.1109/TNB.2008.2000144
[20]
Lee Y C, Li M H, Cheng Y T, et al. Electroplated Ni-CNT nanocomposite for micromechanical resonator applications. IEEE Electron Device Lett, 2012, 33(6), 872 doi: 10.1109/LED.2012.2190131
[21]
Li H, Evans E J Jr, Mullins C B, et al. Ethanol decomposition on Pd-Au alloy catalysts. J Phys Chem C, 2018, 122(38), 22024 doi: 10.1021/acs.jpcc.8b08150
[22]
Li H, Henkelman G. Dehydrogenation selectivity of ethanol on close-packed transition metal surfaces: a computational study of monometallic, Pd/Au, and Rh/Au catalysts. J Phys Chem C, 2017, 121(49), 27504 doi: 10.1021/acs.jpcc.7b09953
[23]
Li H, Shin K, Henkelman G. Effects of ensembles, ligand, and strain on adsorbate binding to alloy surfaces. J Chem Phys, 2018, 149(17), 1 doi: 10.1063/1.5053894
[24]
Li H, Luo L, Kunal P, et al. Oxygen reduction reaction on classically immiscible bimetallics: a case study of RhAu. J Phys Chem C, 2018, 122(5), 2712 doi: 10.1021/acs.jpcc.7b10974
[25]
Hwang Y H, Seo D, Roy M, et al. Capillary flow in PDMS cylindrical microfluidic channel using 3-D printed mold. J Microelectromechan Syst, 2016, 25(2), 238 doi: 10.1109/JMEMS.2016.2521858
[26]
Guo H H, Lou L, Chen X D, et al. PDMS-coated piezoresistive NEMS diaphragm for chloroform vapor detection. IEEE Electron Device Lett, 2012, 33(7), 1078 doi: 10.1109/LED.2012.2195152
[27]
Ryu D, Castaño N. Multivariate characterization of light emission from ZnS: Cu-PDMS self-sensing composites under cyclic tensile strains. IEEE Sens Lett, 2018, 2(2), 1 doi: 10.1109/LSENS.2018.2838019
[28]
Zhu Y B, Yang B, Liu J Q, et al. An integrated flexible harvester coupled triboelectric and piezoelectric mechanisms using PDMS/MWCNT and PVDF. J Microelectromechan Syst, 2015, 24(3), 513 doi: 10.1109/JMEMS.2015.2404037
[29]
Liao H Y, Ho J R, Chang-Jian S K. Fabrication of carbon nanotube field-emission cathodes by laser-induced transfer of carbon nanotubes and silver paste. J Display Technol, 2014, 10(12), 1083 doi: 10.1109/JDT.2014.2345554
[30]
Binesh A R, Kamali R. Effects of chirality on single-file water permeability and diffusivity through single wall carbon nanotubes. Micro Nano Lett, 2017, 12(2), 109 doi: 10.1049/mnl.2016.0384
[31]
Zhang Q R, Han Y, Wu L C. Influence of electrostatic field on the adsorption of phenol on single-walled carbon nanotubes: A study by molecular dynamics simulation. Chem Eng J, 2019, 363(1), 278 doi: 10.1016/j.cej.2019.01.146
[32]
Chen R M, Liang J, Lee J, et al. Variability study of MWCNT local interconnects considering defects and contact resistances—Part I: pristine MWCNT. IEEE Trans Electron Devices, 2018, 65(11), 4955 doi: 10.1109/TED.2018.2868421
[33]
Nguyen V M, Yang I, Jung Y, et al. Resonance raman study of I2-intercalated single-walled carbon nanotubes. IEEE Trans Nanotechnol, 2007, 6(1), 126 doi: 10.1109/TNANO.2006.886784
[34]
Tsai T J, Wang P C. Preparation and characterization of aqueous dispersions based on single-walled carbon nanotubes functionalized with carboxyl anthracenes. The 12th International Microsystems, Packaging, Assembly and Circuits Technology Conference, 2017, 299
[35]
Tang Y C, Zhao Z B, Hu H, et al. Highly stretchable and ultrasensitive strain sensor based on reduced graphene oxide microtubes-elastomer composite. ACS Appl Mater Interfaces, 2015, 7(49), 27432 doi: 10.1021/acsami.5b09314
[36]
Jeong Y R, Park H, Jin S W, et al. Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv Funct Mater, 2015, 25(27), 4228 doi: 10.1002/adfm.201501000
[37]
Jacimovic J, Felberbaum L. Electro-mechanical properties and welding characteristics of Ag/MoS2, Ag/WS2, Ag/CNTs and Ag/CdO materials for high-DC current contact applications. The 27th International Conference on Electrical Contacts, 2014, 132
[38]
Chang C H, Chien C H. Functionalized single-walled carbon-nanotube-blended P3HT-based thin-film transistors with multiwalled carbon-nanotube source and drain electrodes. IEEE Electron Device Lett, 2011, 32(10), 1457 doi: 10.1109/LED.2011.2163054
[39]
Ilarion E, Spiridon S I, Monea B F. Comparative study of gas sensing microsensors based on sulfonated CNTs and CNTs/polyaniline mixture. International Conference and Exposition on Electrical and Power Engineering, 2016, 65
[40]
Ghodrati M, Farmani A, Mir A. Nanoscale sensor-based tunneling carbon nanotube transistor for toxic gases detection: a first-principle study. IEEE Sens J, 2019, 19(17), 7373 doi: 10.1109/JSEN.2019.2916850
[41]
Sha L N, Gao P, Wu T T, et al. Chemical Ni-C bonding in Ni-carbon nanotube composite by a microwave welding method and its induced high-frequency radar frequency electromagnetic wave absorption. ACS Appl Mater Interfaces, 2017, 9(46), 40412 doi: 10.1021/acsami.7b07136
[42]
Wu L C, Han Y, Zhang Q R, et al. Effect of external electric field on nanobubbles at the surface of hydrophobic particles during air flotation. RSC Adv, 2019, 9(4), 1792 doi: 10.1039/C8RA08935C
[43]
Hu C F, Lin C M, Fang W. Integration of Pdms-infiltrated CNTs and Si bulk-micromachining for monolithic physical sensors application. The 17th International Conference on Solid-State Sensors, Actuators and Microsystems, 2013, 1565
[44]
Liang J, Chen R M, Ramos R, et al. Investigation of Pt-salt-doped-standalone-multiwall carbon nanotubes for on-chip interconnect applications. IEEE Trans Electron Devices, 2019, 66(5), 2346 doi: 10.1109/TED.2019.2901658
[45]
Silvestri C, Picciafoco P, Morana B, et al. Electro-thermal simulation and characterization of vertically aligned CNTs directly grown on a suspended microhotplate for thermal management applications. IEEE Sens, 2014, 2014(1), 827 doi: 10.1109/ICSENS.2014.6985127
[46]
Jung H C, Moon J H, Baek D H, et al. CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring. IEEE Trans Biomed Eng, 2012, 59(5), 1472 doi: 10.1109/TBME.2012.2190288
[47]
Rezaei B, Irannejad N, Ensafi A A, et al. Application of modified carbon quantum dots/multiwall carbon nanotubes/pencil graphite electrode for electrochemical determination of dextromethorphan. IEEE Sens J, 2016, 16(8), 2219 doi: 10.1109/JSEN.2016.2517005
[48]
Xie S X, Gao F Q, Patel S C, et al. Clinically relevant CNT dispersions with exceptionally high dielectric properties for microwave theranostic applications. IEEE Trans Biomed Eng, 2014, 61(11), 2718 doi: 10.1109/TBME.2014.2326398
[49]
Yang Y P, Luo C Z, Jia J J, et al. A wrinkled Ag/CNTs-PDMS composite film for a high-performance flexible sensor and its applications in human-body single monitoring. Nanamaterials, 2019, 9(6), 1 doi: 10.3390/nano9060850
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3891 Times PDF downloads: 74 Times Cited by: 0 Times

    History

    Received: 29 August 2019 Revised: 23 October 2019 Online: Accepted Manuscript: 29 October 2019Uncorrected proof: 31 October 2019Published: 08 November 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Shuo Li, Xiao Feng, Hao Liu, Kai Wang, Yun-Ze Long, S. Ramakrishna. Preparation and application of carbon nanotubes flexible sensors[J]. Journal of Semiconductors, 2019, 40(11): 111606. doi: 10.1088/1674-4926/40/11/111606 S Li, X Feng, H Liu, K Wang, Y Z Long, S Ramakrishna, Preparation and application of carbon nanotubes flexible sensors[J]. J. Semicond., 2019, 40(11): 111606. doi: 10.1088/1674-4926/40/11/111606.Export: BibTex EndNote
      Citation:
      Shuo Li, Xiao Feng, Hao Liu, Kai Wang, Yun-Ze Long, S. Ramakrishna. Preparation and application of carbon nanotubes flexible sensors[J]. Journal of Semiconductors, 2019, 40(11): 111606. doi: 10.1088/1674-4926/40/11/111606

      S Li, X Feng, H Liu, K Wang, Y Z Long, S Ramakrishna, Preparation and application of carbon nanotubes flexible sensors[J]. J. Semicond., 2019, 40(11): 111606. doi: 10.1088/1674-4926/40/11/111606.
      Export: BibTex EndNote

      Preparation and application of carbon nanotubes flexible sensors

      doi: 10.1088/1674-4926/40/11/111606
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return