ARTICLES 

Hot electron effects on the operation of potential well barrier diodes

M. Akura1, , G. Dunn1, 2 and M. Missous3

+ Author Affiliations

 Corresponding author: M. Akura, Email: r01mja16@abdn.ac.uk

PDF

Turn off MathJax

Abstract: A study has just been carried out on hot electron effects in GaAs/Al0.3Ga0.7As potential well barrier (PWB) diodes using both Monte Carlo (MC) and drift-diffusion (DD) models of charge transport. We show the operation and behaviour of the diode in terms of electric field, mean electron velocity and potential, mean energy of electrons and Γ-valley population. The MC model predicts lower currents flowing through the diode due to back scattering at anode (collector) and carrier heating at higher bias. At a bias of 1.0 V, the current density obtained from experimental result, MC and DD simulation models are 1.35, 1.12 and 1.77 μA/μm2 respectively. The reduction in current over conventional model, is compensated to a certain extent because less charge settles in the potential well and so the barrier is slightly reduced. The DD model results in higher currents under the same bias and conditions. However, at very low bias specifically, up to 0.3 V without any carrier heating effects, the DD and MC models look pretty similar as experimental results. The significant differences observed in the I–V characteristics of the DD and MC models at higher biases confirm the importance of energy transport when considering these devices.

Key words: Monte Carlo modelback scatteringcarrier heatingelectron energynon-stationary fields



[1]
Akura M, Dunn G, Sexton J, et al. Potential well barrier diodes for submillimeter wave and high frequency applications. IEEE Electron Device Lett, 2017, 38, 438 doi: 10.1109/LED.2017.2673662
[2]
Malik R J, Aucoin T R, Ross R L, et al. Planar-doped barriers in GaAs by molecular beam epitaxy. Electron Lett, 1980, 16, 836 doi: 10.1049/el:19800594
[3]
Dixon S, Malik R. Subharmonic planar doped barrier mixer conversion loss characteristics. IEEE Trans Microwave Theory Tech, 1983, 31, 155 doi: 10.1109/TMTT.1983.1131450
[4]
Luryi S. High-speed electronics. New Jersey: Wiley, 1990
[5]
Akura M, Dunn G, Missous M. A hybrid planar-doped potential-well barrier diode for detector applications. IEEE Trans Electron Devices, 2017, 64, 4031 doi: 10.1109/TED.2017.2733724
[6]
Kollberg E, Rydberg L. Quantum barrier varactor diodes for high efficiency millimetre-wave multipliers. Electron Lett, 1989, 25, 1696 doi: 10.1049/el:19891134
[7]
Cook R K. Computer simulation of carrier transport in planar doped barrier diodes. Appl Phys Lett, 1983, 42, 439 doi: 10.1063/1.93963
[8]
Couch N R, Kearney M J. Hot electron properties of GaAs planar doped barrier diodes. J Appl Phys, 1989, 66, 5083 doi: 10.1063/1.343734
[9]
Wang T, Hess K, Lafrate G J. Time-dependent ensemble Monte Carlo simulation for planar doped GaAs structures. J Appl Phys, 1985, 58, 857 doi: 10.1063/1.336155
[10]
Akura M, Dunn G, Sexton J, et al. GaAs/AlGaAs potential well barrier diodes: Novel diode for detector and mixer applications. Phys Status Solidi A, 2017, 214, 17002901 doi: 10.1002/pssa.201700290
[11]
Akura M, Dunn G. Investigating the effect of temperature on barrier height of PWB diodes. Electron Lett, 2017, 54, 42 doi: 10.1049/el.2017.3353
[12]
Akura M, Dunn G, Missous M. Investigating the role of band offset on the property and operation of the potential well barrier diodes. Phys Status Solidi B, 2019, 256, 1800284 doi: 10.1002/pssb.201800284
[13]
Van Tuyen V, Szentpa'li B. Tunneling in planar-doped barrier diodes. J Appl Phys, 1990, 68, 2824 doi: 10.1063/1.346462
[14]
Jiang W N, Mishra U K. Current flow mechanisms in GaAs planar-doped-barrier diodes with high built-in fields. J Appl Phys, 1993, 74, 5569 doi: 10.1063/1.354217
[15]
Liberis J, Matulionis A, Sakalas P, et al. Noise in physical systems and 1/f fluctuations. World Singapore: Scientific, 1997, 67
[16]
Li C, Khalid A, Piligrim N, et al. Novel planar Gunn diode operating in fundamental mode up to 158 GHz. J Phys: Conf Ser, 2009, 193, 0120291 doi: 10.1088/1742-6596/193/1/012029
[17]
Teoh T, Dunn G, Priestley N, et al. Monte Carlo modelling of multiple-transit-region Gunn diodes. Semicond Sci Technol, 2002, 17, 1090 doi: 10.1088/0268-1242/17/10/310
[18]
Pilgrim N, Macpherson R, Khalid A, et al. Multiple and broad frequency response Gunn diodes. Semicond Sci Technol, 2009, 24, 105010 doi: 10.1088/0268-1242/24/10/05010
[19]
Jacoboni J C, Reggiani L. The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev Mod Phys, 1983, 55, 645 doi: 10.1103/RevModPhys.55.645
[20]
Fawcett W, Boardman A D, Swain S. Monte Carlo determination of electron transport properties in gallium arsenide. J Phys Chem Solids, 1970, 31, 1963 doi: 10.1016/0022-3697(70)90001-6
[21]
Hockney R W, Eastwood J W. Computer simulation using particles. Bristol and Philadelphia: CRC Press, 1988, 374
[22]
Tomizawa K. Numerical simulation of submicron semiconductor devices. London: Artech House, 1993, 115
[23]
Jacoboni C, Lugli P. The Monte Carlo method for semiconductor device simulation. 1st ed. Spring- Verlag/Wien, 1989, 219
[24]
Snowden C M. Semiconductor device modelling. London: Peter Peregrinus Ltd, 1988, 5, 175
[25]
Grasser T, Tang T, Kosina H, et al. A review of hydrodynamic and energy transport models for semiconductor device simulation. Proc IEEE, 2003, 91, 251 doi: 10.1109/JPROC.2002.808150
[26]
Sze S M. Physics of semiconductor devices. 2nd ed. New York: John Wiley & Sons, 1981, 44
[27]
Frey J. Where do hot electrons come from. IEEE Circuits Devices Mag, 1991, 7, 31 doi: 10.1109/101.101754
[28]
Rode D L. Semiconductors and semimetals. New York: Academic, 1975, 10, 1
Fig. 1.  The epitaxial structure of the potential well barrier diode showing all the design parameters.

Fig. 2.  Comparison of the experimental results (diamond), the drift-diffusion (broken line) and Monte Carlo (solid line) simulation models. Result shows that the MC model has better agreement with the experimental results than the DD model lower bias (a) linear (b) logarithmic plots.

Fig. 3.  Behaviour of effective (including the band offset) electric field for various operating bias across the diode.

Fig. 4.  Effect of varying electric field on the population of electron across the diode. The result shows that there are more electrons in the diode operating at a lower field (bias of 0.5 V).

Fig. 5.  Electron velocity as a function of positon across the diode under influence of non-stationary field. Results shows little differences in the maximum velocity for the three biases: 0.5, 1.0 and 2.0 V. The velocity drops faster across the diode for diode operating at 2.0 V.

Fig. 6.  Average electron energy as function of position across diode for several bias. The mean energy of electrons increases considerably with the bias.

[1]
Akura M, Dunn G, Sexton J, et al. Potential well barrier diodes for submillimeter wave and high frequency applications. IEEE Electron Device Lett, 2017, 38, 438 doi: 10.1109/LED.2017.2673662
[2]
Malik R J, Aucoin T R, Ross R L, et al. Planar-doped barriers in GaAs by molecular beam epitaxy. Electron Lett, 1980, 16, 836 doi: 10.1049/el:19800594
[3]
Dixon S, Malik R. Subharmonic planar doped barrier mixer conversion loss characteristics. IEEE Trans Microwave Theory Tech, 1983, 31, 155 doi: 10.1109/TMTT.1983.1131450
[4]
Luryi S. High-speed electronics. New Jersey: Wiley, 1990
[5]
Akura M, Dunn G, Missous M. A hybrid planar-doped potential-well barrier diode for detector applications. IEEE Trans Electron Devices, 2017, 64, 4031 doi: 10.1109/TED.2017.2733724
[6]
Kollberg E, Rydberg L. Quantum barrier varactor diodes for high efficiency millimetre-wave multipliers. Electron Lett, 1989, 25, 1696 doi: 10.1049/el:19891134
[7]
Cook R K. Computer simulation of carrier transport in planar doped barrier diodes. Appl Phys Lett, 1983, 42, 439 doi: 10.1063/1.93963
[8]
Couch N R, Kearney M J. Hot electron properties of GaAs planar doped barrier diodes. J Appl Phys, 1989, 66, 5083 doi: 10.1063/1.343734
[9]
Wang T, Hess K, Lafrate G J. Time-dependent ensemble Monte Carlo simulation for planar doped GaAs structures. J Appl Phys, 1985, 58, 857 doi: 10.1063/1.336155
[10]
Akura M, Dunn G, Sexton J, et al. GaAs/AlGaAs potential well barrier diodes: Novel diode for detector and mixer applications. Phys Status Solidi A, 2017, 214, 17002901 doi: 10.1002/pssa.201700290
[11]
Akura M, Dunn G. Investigating the effect of temperature on barrier height of PWB diodes. Electron Lett, 2017, 54, 42 doi: 10.1049/el.2017.3353
[12]
Akura M, Dunn G, Missous M. Investigating the role of band offset on the property and operation of the potential well barrier diodes. Phys Status Solidi B, 2019, 256, 1800284 doi: 10.1002/pssb.201800284
[13]
Van Tuyen V, Szentpa'li B. Tunneling in planar-doped barrier diodes. J Appl Phys, 1990, 68, 2824 doi: 10.1063/1.346462
[14]
Jiang W N, Mishra U K. Current flow mechanisms in GaAs planar-doped-barrier diodes with high built-in fields. J Appl Phys, 1993, 74, 5569 doi: 10.1063/1.354217
[15]
Liberis J, Matulionis A, Sakalas P, et al. Noise in physical systems and 1/f fluctuations. World Singapore: Scientific, 1997, 67
[16]
Li C, Khalid A, Piligrim N, et al. Novel planar Gunn diode operating in fundamental mode up to 158 GHz. J Phys: Conf Ser, 2009, 193, 0120291 doi: 10.1088/1742-6596/193/1/012029
[17]
Teoh T, Dunn G, Priestley N, et al. Monte Carlo modelling of multiple-transit-region Gunn diodes. Semicond Sci Technol, 2002, 17, 1090 doi: 10.1088/0268-1242/17/10/310
[18]
Pilgrim N, Macpherson R, Khalid A, et al. Multiple and broad frequency response Gunn diodes. Semicond Sci Technol, 2009, 24, 105010 doi: 10.1088/0268-1242/24/10/05010
[19]
Jacoboni J C, Reggiani L. The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev Mod Phys, 1983, 55, 645 doi: 10.1103/RevModPhys.55.645
[20]
Fawcett W, Boardman A D, Swain S. Monte Carlo determination of electron transport properties in gallium arsenide. J Phys Chem Solids, 1970, 31, 1963 doi: 10.1016/0022-3697(70)90001-6
[21]
Hockney R W, Eastwood J W. Computer simulation using particles. Bristol and Philadelphia: CRC Press, 1988, 374
[22]
Tomizawa K. Numerical simulation of submicron semiconductor devices. London: Artech House, 1993, 115
[23]
Jacoboni C, Lugli P. The Monte Carlo method for semiconductor device simulation. 1st ed. Spring- Verlag/Wien, 1989, 219
[24]
Snowden C M. Semiconductor device modelling. London: Peter Peregrinus Ltd, 1988, 5, 175
[25]
Grasser T, Tang T, Kosina H, et al. A review of hydrodynamic and energy transport models for semiconductor device simulation. Proc IEEE, 2003, 91, 251 doi: 10.1109/JPROC.2002.808150
[26]
Sze S M. Physics of semiconductor devices. 2nd ed. New York: John Wiley & Sons, 1981, 44
[27]
Frey J. Where do hot electrons come from. IEEE Circuits Devices Mag, 1991, 7, 31 doi: 10.1109/101.101754
[28]
Rode D L. Semiconductors and semimetals. New York: Academic, 1975, 10, 1
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3132 Times PDF downloads: 40 Times Cited by: 0 Times

    History

    Received: 19 November 2018 Revised: 29 April 2019 Online: Accepted Manuscript: 18 May 2019Uncorrected proof: 22 May 2019Published: 09 December 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      M. Akura, G. Dunn, M. Missous. Hot electron effects on the operation of potential well barrier diodes[J]. Journal of Semiconductors, 2019, 40(12): 122101. doi: 10.1088/1674-4926/40/12/122101 M Akura, G Dunn, M Missous, Hot electron effects on the operation of potential well barrier diodes[J]. J. Semicond., 2019, 40(12): 122101. doi: 10.1088/1674-4926/40/12/122101.Export: BibTex EndNote
      Citation:
      M. Akura, G. Dunn, M. Missous. Hot electron effects on the operation of potential well barrier diodes[J]. Journal of Semiconductors, 2019, 40(12): 122101. doi: 10.1088/1674-4926/40/12/122101

      M Akura, G Dunn, M Missous, Hot electron effects on the operation of potential well barrier diodes[J]. J. Semicond., 2019, 40(12): 122101. doi: 10.1088/1674-4926/40/12/122101.
      Export: BibTex EndNote

      Hot electron effects on the operation of potential well barrier diodes

      doi: 10.1088/1674-4926/40/12/122101
      More Information
      • Corresponding author: Email: r01mja16@abdn.ac.uk
      • Received Date: 2018-11-19
      • Revised Date: 2019-04-29
      • Published Date: 2019-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return