ARTICLES

Second generation fully differential current conveyor based analog circuits

A. Tonk and N. Afzal

+ Author Affiliations

 Corresponding author: A. Tonk, e-mail: tonkanu.saroha@gmail.com

PDF

Turn off MathJax

Abstract: In this paper, we present a new voltage-mode biquad filter that uses a six-terminal CMOS fully differential current conveyor (FDCCII). The FDCCII with only 23 transistors in its structure and operating at ± 1.5 V, is based on a class AB fully differential buffer. The proposed filter has the facility to tune gain, ωo and Q. A circuit division circuit (CDC) is employed to digitally control the FDCCII block. This digitally controlled FDCCII is used to realize a new reconfigurable fully-differential integrator and differentiator. We performed SPICE simulations to determine the performance of all circuits using CMOS 0.25 μm technology.

Key words: current conveyorsfully differentialdigitally controlledintegratordifferentiator



[1]
Mohan J, Chaturvedi B, Maheshwari S. Low voltage mixed mode multi phase oscillator using single FDCCII. Electronics, 2016, 20(1), 36 doi: 10.7251/ELS1620090S
[2]
Kaçar F, Yeşil A. FDCCII-based FDNR simulator topologies. Int J Electron, 2012, 99(2), 285 doi: 10.1080/00207217.2011.610148
[3]
Maheshwari S, Beg P, Khan I A, et al. Digitally programmable fully differential filter. Radioengineering, 2011, 20(4), 917
[4]
Gür F, Anday F. Simulation of a novel current mode universal filter using FDCCIIs. Analog Integr Circuits Signal Process, 2009, 60(3), 231 doi: 10.1007/s10470-009-9293-y
[5]
El-Adawy A A, Soliman A M, Elwan H O. A novel fully differential current conveyor and applications for analog VLSI. IEEE Trans Circuits Syst II, 2000, 47(4), 306 doi: 10.1109/82.839666
[6]
Chang C M, Al-Hashimi B M, Wang C L, et al. Single fully differential current conveyor biquad filters. IEEE Proceedings-Circuits Devices and Systems, 2003, 150(5), 394 doi: 10.1049/ip-cds:20030468
[7]
Kumngern M, Khateb F. 0.5-V bulk-driven fully differential current conveyor. IEEE Symposium Computer Applications and Industrial Electronics (ISCAIE), 2014, 184
[8]
Tonk A, Afzal N. Bulk driven second generation current conveyor based all-pass section for low voltage operation. IEEE Conference on Computing, Power and Communication Technologies, GUCON, Greater Noida (To appear).
[9]
Alzaher H A, Elwan H, Ismail M. A CMOS fully balanced second-generation current conveyor. IEEE Trans Circuits Syst II, 2003, 50(6), 278 doi: 10.1109/TCSII.2003.812911
[10]
Mahmoud S A, Hashiesh M A, Soliman A M. Low-voltage digitally controlled fully differential current conveyor. IEEE Trans Circuits Syst I, 2005, 52(10), 2055 doi: 10.1109/TCSI.2005.852922
[11]
Khan I A, Masud M I, Moiz S A. Reconfigurable fully differential first order all pass filter using digitally controlled CMOS DVCC. GCC Conference and Exhibition (GCCCE), 2015, 1
[12]
Horng J W, Wu, Herencsar. Fully differential first-order all pass filters using a DDCC. Ind J Eng Mater Sci, 2014, 21(4), 345
[13]
Al-Shahrani S M. Fully differential second-order filter. 47th IEEE Midwest Symposium on Circuits and Systems, 2004, 3, iii-299
[14]
Mahmoud S A. Fully differential CMOS CCII based on differential difference transconductor. Analog Integrated Circuits and Signal Processing, 2007, 50(3), 195 doi: 10.1007/s10470-007-9026-z
[15]
Chipipop B, Surakampontorn W. Realisation of current-mode FTFN-based inverse filter. Electron Lett, 1999, 35(9), 690 doi: 10.1049/el:19990495
[16]
Wu C H, Hsieh H H, Ku P C, et al. A differential Sallen-key low-pass filter in amorphous-silicon technology. J Display Technol, 2010, 6(6), 207 doi: 10.1109/JDT.2010.2044631
[17]
Stornelli V, Ferri G. A 0.18 μm CMOS DDCCII for portable LV-LP filters. Radio engineering, 2013, 22(2), 434
[18]
Minaei S, Ibrahim M A. General configuration for realizing current-mode first-order all-pass filter using DVCC. Int J Electron, 2005, 92(6), 347 doi: 10.1080/00207210412331334798
[19]
Kacar F, Kuntman H, Özcan S. New high performance CMOS fully differential current conveyor. Electrosocope, 2008 doi: 10.1109/SIU.2008.4632554
[20]
Mahmoud S A. Low voltage fully differential CMOS current feedback operational amplifier. The 47th IEEE Midwest Symposium on Circuits and Systems, 2004, 1, I-49 doi: 10.1109/MWSCAS.2004.1353894
Fig. 1.  (a) Matrix representation of FDCCII. (b) Symbol for FDCCII.

Fig. 2.  CMOS FDCCII implementation.

Fig. 3.  (Color online) (a) DC voltage characteristics of differential X terminal. (b) DC current response of differential Z terminal.

Fig. 4.  Second order Filter realized using CMOS FDCCII (LP/BP response).

Fig. 5.  LPF gain tuning (fo = 13 kHz) through R1.

Fig. 6.  BPF gain tuning (fo = 13 kHz & Q = 4.08) through R1.

Fig. 7.  At constant central frequency of 13 kHz, Q values varying with R2 are 3.3, 4.9 & 6.5 respectively.

Fig. 8.  (a) Current division circuit (CDC). (b) Matrix representation of DCFDCCII. (c) Symbol of DCFDCCII.

Fig. 9.  (Color online) DC response of Z terminals current of DCFDCCII.

Fig. 10.  DCFDCCII based programmable integrator and differentiator.

Fig. 11.  Observed output for codeword (a) 111111, (b) 010101.

Fig. 12.  (Color online) Differentiator input & observed output for code words.

Fig. 13.  (Color online) Input (inoise) and output (onoise) referred noise spectral density for (a) integrator, (b) differentiator.

Table 1.   Main features of FDCCII.

VDD, VSS, VSB, Vb 1.5, −1.5, −1.25, −0.787 V
No. of transistors23
DC voltage range−1 to 1 V
DC current range−100 to 100 mA
−3 dB bandwidth: VZd/VYd82 MHz
FOM1 =(Vinmax/VDD) × 10066
DownLoad: CSV

Table 2.   Aspect ratios of MOS transistors.

Transistor for FDCCIIW/L (μm/μm)
M1, M8, M9, M18, M192/1
M3, M5, M7, M20, M22200/2
M2, M4, M6, M21, M23150/2
M15, M16100/2
M10, M13, M14, M1780/1
M11, M1280/2
Transistor for CDNW/L (μm/μm)
All transistors1/0.35
DownLoad: CSV

Table 3.   Summarized performance of proposed filter.

CharacteristicsProposed realization
Supply used ± 1.5 V
Technology0.25 μm
Fully differentialYes
Active elementFDCCII
No. of active elements3
Enjoys independent tuningYes
Tuning (analog/digital)Analog
Component valuesR1 = 1.3 kΩ; R2 = 2.5 kΩ (for LPF) and 10 kΩ (for BPF); R3 = 3 kΩ; R4 = 2 kΩ; C1 = 5 nF; C2 = 5 nF
DownLoad: CSV

Table 4.   Comparative study of previously reported differential second order filters.

ReferenceAdway 2000[5]Alzaher 2003[9]Chang 2003[6]Shahrani 2004[13]Mahmoud 2004[20]Mahmoud 2005[10]Mahmoud 2007[14]Karac 2008[19]This work
Technology node (μm)1.2 1.2 1.2 0.35 0.5 0.35 0.35 0.25
Active element usedFDCCIIFBCCIIFDCCIICCII/AD844FDCFOAFDCCIIFDCCIIFDCCIIFDCCII
Number of active elements used311616123
Supply rails used (V) ± 1.5 ± 2.7 ± 5 ± 1.5 ± 1.5 ± 1.5 ± 1.25 ± 1.5
Functions realizedLP BPBPLP BP AP BRLP BPLPLP BP APBPLP BP APLP BP
Tuning featureNYNYNYYNY
Fully differentialYYYYYYYYY
DownLoad: CSV

Table 5.   Summarized performance of proposed DCFDCCII applications.

Proposed realization IntegratorDifferentiator
Supply used ± 1.5 V ± 1.5 V
Technology0.25 μm0.25 μm
Fully differentialYesYes
Active elementDCFDCCIIDCFDCCII
No. of active elements11
TuningDigitalDigital
Component valuesR = 2.5 kΩ, C = 400 pFC = 13 nF, R = 500 kΩ
DownLoad: CSV
[1]
Mohan J, Chaturvedi B, Maheshwari S. Low voltage mixed mode multi phase oscillator using single FDCCII. Electronics, 2016, 20(1), 36 doi: 10.7251/ELS1620090S
[2]
Kaçar F, Yeşil A. FDCCII-based FDNR simulator topologies. Int J Electron, 2012, 99(2), 285 doi: 10.1080/00207217.2011.610148
[3]
Maheshwari S, Beg P, Khan I A, et al. Digitally programmable fully differential filter. Radioengineering, 2011, 20(4), 917
[4]
Gür F, Anday F. Simulation of a novel current mode universal filter using FDCCIIs. Analog Integr Circuits Signal Process, 2009, 60(3), 231 doi: 10.1007/s10470-009-9293-y
[5]
El-Adawy A A, Soliman A M, Elwan H O. A novel fully differential current conveyor and applications for analog VLSI. IEEE Trans Circuits Syst II, 2000, 47(4), 306 doi: 10.1109/82.839666
[6]
Chang C M, Al-Hashimi B M, Wang C L, et al. Single fully differential current conveyor biquad filters. IEEE Proceedings-Circuits Devices and Systems, 2003, 150(5), 394 doi: 10.1049/ip-cds:20030468
[7]
Kumngern M, Khateb F. 0.5-V bulk-driven fully differential current conveyor. IEEE Symposium Computer Applications and Industrial Electronics (ISCAIE), 2014, 184
[8]
Tonk A, Afzal N. Bulk driven second generation current conveyor based all-pass section for low voltage operation. IEEE Conference on Computing, Power and Communication Technologies, GUCON, Greater Noida (To appear).
[9]
Alzaher H A, Elwan H, Ismail M. A CMOS fully balanced second-generation current conveyor. IEEE Trans Circuits Syst II, 2003, 50(6), 278 doi: 10.1109/TCSII.2003.812911
[10]
Mahmoud S A, Hashiesh M A, Soliman A M. Low-voltage digitally controlled fully differential current conveyor. IEEE Trans Circuits Syst I, 2005, 52(10), 2055 doi: 10.1109/TCSI.2005.852922
[11]
Khan I A, Masud M I, Moiz S A. Reconfigurable fully differential first order all pass filter using digitally controlled CMOS DVCC. GCC Conference and Exhibition (GCCCE), 2015, 1
[12]
Horng J W, Wu, Herencsar. Fully differential first-order all pass filters using a DDCC. Ind J Eng Mater Sci, 2014, 21(4), 345
[13]
Al-Shahrani S M. Fully differential second-order filter. 47th IEEE Midwest Symposium on Circuits and Systems, 2004, 3, iii-299
[14]
Mahmoud S A. Fully differential CMOS CCII based on differential difference transconductor. Analog Integrated Circuits and Signal Processing, 2007, 50(3), 195 doi: 10.1007/s10470-007-9026-z
[15]
Chipipop B, Surakampontorn W. Realisation of current-mode FTFN-based inverse filter. Electron Lett, 1999, 35(9), 690 doi: 10.1049/el:19990495
[16]
Wu C H, Hsieh H H, Ku P C, et al. A differential Sallen-key low-pass filter in amorphous-silicon technology. J Display Technol, 2010, 6(6), 207 doi: 10.1109/JDT.2010.2044631
[17]
Stornelli V, Ferri G. A 0.18 μm CMOS DDCCII for portable LV-LP filters. Radio engineering, 2013, 22(2), 434
[18]
Minaei S, Ibrahim M A. General configuration for realizing current-mode first-order all-pass filter using DVCC. Int J Electron, 2005, 92(6), 347 doi: 10.1080/00207210412331334798
[19]
Kacar F, Kuntman H, Özcan S. New high performance CMOS fully differential current conveyor. Electrosocope, 2008 doi: 10.1109/SIU.2008.4632554
[20]
Mahmoud S A. Low voltage fully differential CMOS current feedback operational amplifier. The 47th IEEE Midwest Symposium on Circuits and Systems, 2004, 1, I-49 doi: 10.1109/MWSCAS.2004.1353894
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3641 Times PDF downloads: 76 Times Cited by: 0 Times

    History

    Received: 16 September 2018 Revised: 19 February 2019 Online: Accepted Manuscript: 22 February 2019Uncorrected proof: 27 February 2019Published: 08 April 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      A. Tonk, N. Afzal. Second generation fully differential current conveyor based analog circuits[J]. Journal of Semiconductors, 2019, 40(4): 042401. doi: 10.1088/1674-4926/40/4/042401 A. Tonk, N. Afzal, Second generation fully differential current conveyor based analog circuits[J]. J. Semicond., 2019, 40(4): 042401. doi: 10.1088/1674-4926/40/4/042401.Export: BibTex EndNote
      Citation:
      A. Tonk, N. Afzal. Second generation fully differential current conveyor based analog circuits[J]. Journal of Semiconductors, 2019, 40(4): 042401. doi: 10.1088/1674-4926/40/4/042401

      A. Tonk, N. Afzal, Second generation fully differential current conveyor based analog circuits[J]. J. Semicond., 2019, 40(4): 042401. doi: 10.1088/1674-4926/40/4/042401.
      Export: BibTex EndNote

      Second generation fully differential current conveyor based analog circuits

      doi: 10.1088/1674-4926/40/4/042401
      More Information
      • Corresponding author: e-mail: tonkanu.saroha@gmail.com
      • Received Date: 2018-09-16
      • Revised Date: 2019-02-19
      • Published Date: 2019-04-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return