NEWS AND VIEWS

Opto-electro-thermal simulation technology of solar cells

Yidan An1, 2, Yue Zhao1, 2, Tianshu Ma1, 2 and Xiaofeng Li1, 2,

+ Author Affiliations

 Corresponding author: Xiaofeng Li, Email: xfli@suda.edu.cn

PDF

Turn off MathJax



[1]
Green M A, Bremner S P. Energy conversion approaches and materials for high-efficiency photovoltaics. Nat Mater, 2017, 16(1), 23 doi: 10.1038/nmat4676
[2]
Best Research-Cell Efficiencies (NREL, 2019) https://www.nrel.gov/pv/assets/pdfs/best-reserch-cell-efficiencies.20190411.pdf.
[3]
Polman A, Knight M, Garnett E C, et al. Photovoltaic materials: Present efficiencies and future challenges. Science, 2016, 352(6283), aad4424 doi: 10.1126/science.aad4424
[4]
Polman A, Atwater H A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nat Mater, 2012, 11(3), 174 doi: 10.1038/nmat3263
[5]
Shang A, Li X. Photovoltaic devices: opto-electro-thermal physics and modeling. Adv Mater, 2017, 29(8), 1603492 doi: 10.1002/adma.201603492
[6]
Shang A, An Y, Ma D, et al. Optoelectronic insights into the photovoltaic losses from photocurrent, voltage, and energy perspectives. AIP Adv, 2017, 7(8), 085019 doi: 10.1063/1.4990288
[7]
Li X, Hylton N P, Giannini V, et al. Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells. Opt Express, 2011, 19(104), A888 doi: 10.1364/OE.19.00A888
[8]
Li X, Hylton N P, Giannini V, et al. Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations. Prog Photovolt: Res Appl, 2013, 21(1), 109 doi: 10.1002/pip.v21.1
[9]
An Y, Shang A, Cao G, et al. Perovskite solar cells: optoelectronic simulation and optimization. Solar RRL, 2018, 2(11), 1800126 doi: 10.1002/solr.v2.11
[10]
Zhu L, Raman A P, Fan S. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. PNAS, 2015, 112(40), 12282 doi: 10.1073/pnas.1509453112
[11]
Piprek J. Semiconductor optoelectronic devices: introduction to physics and simulation. Elsevier, 2013
Fig. 1.  (Color online) (a) Schematic diagrams of energy flow distribution in SCs under sunlight illumination. (b) The carrier thermodynamic physics in SCs. (c) The schematic diagrams of optical, electrical and thermal optimization strategy applied in the SC. (d) The possible applications of the OET simulation technology[5].

[1]
Green M A, Bremner S P. Energy conversion approaches and materials for high-efficiency photovoltaics. Nat Mater, 2017, 16(1), 23 doi: 10.1038/nmat4676
[2]
Best Research-Cell Efficiencies (NREL, 2019) https://www.nrel.gov/pv/assets/pdfs/best-reserch-cell-efficiencies.20190411.pdf.
[3]
Polman A, Knight M, Garnett E C, et al. Photovoltaic materials: Present efficiencies and future challenges. Science, 2016, 352(6283), aad4424 doi: 10.1126/science.aad4424
[4]
Polman A, Atwater H A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nat Mater, 2012, 11(3), 174 doi: 10.1038/nmat3263
[5]
Shang A, Li X. Photovoltaic devices: opto-electro-thermal physics and modeling. Adv Mater, 2017, 29(8), 1603492 doi: 10.1002/adma.201603492
[6]
Shang A, An Y, Ma D, et al. Optoelectronic insights into the photovoltaic losses from photocurrent, voltage, and energy perspectives. AIP Adv, 2017, 7(8), 085019 doi: 10.1063/1.4990288
[7]
Li X, Hylton N P, Giannini V, et al. Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells. Opt Express, 2011, 19(104), A888 doi: 10.1364/OE.19.00A888
[8]
Li X, Hylton N P, Giannini V, et al. Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations. Prog Photovolt: Res Appl, 2013, 21(1), 109 doi: 10.1002/pip.v21.1
[9]
An Y, Shang A, Cao G, et al. Perovskite solar cells: optoelectronic simulation and optimization. Solar RRL, 2018, 2(11), 1800126 doi: 10.1002/solr.v2.11
[10]
Zhu L, Raman A P, Fan S. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. PNAS, 2015, 112(40), 12282 doi: 10.1073/pnas.1509453112
[11]
Piprek J. Semiconductor optoelectronic devices: introduction to physics and simulation. Elsevier, 2013
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4311 Times PDF downloads: 81 Times Cited by: 0 Times

    History

    Received: Revised: Online: Accepted Manuscript: 30 April 2019Uncorrected proof: 30 April 2019Published: 08 May 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yidan An, Yue Zhao, Tianshu Ma, Xiaofeng Li. Opto-electro-thermal simulation technology of solar cells[J]. Journal of Semiconductors, 2019, 40(5): 050403. doi: 10.1088/1674-4926/40/5/050403 Y D An, Y Zhao, T S Ma, X F Li, Opto-electro-thermal simulation technology of solar cells[J]. J. Semicond., 2019, 40(5): 050403. doi: 10.1088/1674-4926/40/5/050403.Export: BibTex EndNote
      Citation:
      Yidan An, Yue Zhao, Tianshu Ma, Xiaofeng Li. Opto-electro-thermal simulation technology of solar cells[J]. Journal of Semiconductors, 2019, 40(5): 050403. doi: 10.1088/1674-4926/40/5/050403

      Y D An, Y Zhao, T S Ma, X F Li, Opto-electro-thermal simulation technology of solar cells[J]. J. Semicond., 2019, 40(5): 050403. doi: 10.1088/1674-4926/40/5/050403.
      Export: BibTex EndNote

      Opto-electro-thermal simulation technology of solar cells

      doi: 10.1088/1674-4926/40/5/050403
      Funds:

      Project supported by the This work is supported by National Natural Science Foundation of China (61675142 and 61875143), Jiangsu Provincial Natural Science Foundation of China (BK20180042), Natural Science Research Project of Jiangsu Higher Education Institutions (17KJA480004), and Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_2501)

      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return